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Abstract

Background: Diabetes mellitus (DM) is a major public health problem which prevalence is constantly raising,
particularly in low- and middle-income countries. Both diabetes mellitus types (DMT1 and DMT2) are associated
with high risk of developing chronic complications, such as retinopathy, nephropathy, neuropathy, endothelial

dysfunction, and atherosclerosis.

Methods: This is a review of available articles concerning HDL subfractions profile in diabetes mellitus and the related
cardiovascular risk. In this review, HDL dysfunction in diabetes, the impact of HDL alterations on the risk diabetes
development as well as the association between disturbed HDL particle in DM and cardiovascular risk is discussed.

Results: Changes in the amount of circulation lipids, including triglycerides and LDL cholesterol as well as the HDL are

frequent also in the course of DMT1 and DMT2. In normal state HDL exerts various antiatherogenic properties, including
reverse cholesterol transport, antioxidative and anti-inflammatory capacities. However, it has been suggested that in
pathological state HDL becomes “dysfunctional” which means that relative composition of lipids and proteins in HDL, as
well as enzymatic activities associated to HDL, such as paraoxonase 1 (PONT) and lipoprotein-associated phospholipase

11 (Lp-PLA2) are altered. HDL properties are compromised in patients with diabetes mellitus (DM), due to oxidative
modification and glycation of the HDL protein as well as the transformation of the HDL proteome into a proinflammatory
protein. Numerous studies confirm that the ability of HDL to suppress inflammatory signals is significantly reduced in this
group of patients. However, the exact underlying mechanisms remains to be unravelled in vivo.

Conclusions: The understanding of pathological mechanisms underlying HDL dysfunction may enable the development

of therapies targeted at specific subpopulations and focusing at the diminishing of cardiovascular risk.
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Background

Diabetes mellitus (DM) is a major public health problem
which prevalence is constantly raising, particularly in
low- and middle-income countries [1]. In 2012, total
burden of deaths worldwide from high blood glucose
was estimated to amount to 3.7 million. 1.5 million
deaths were associated with the presence of diabetes,
while additional 2.2 million deaths was the result of
DM-related increased risks of cardiovascular and other
diseases [1]. In 2014, 422 million people in the world
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suffered from diabetes [1]. Both diabetes mellitus types
(DMT1 and DMT?2) are associated with high risk of
developing chronic complications, such as retinopathy,
nephropathy, neuropathy, endothelial dysfunction, and
atherosclerosis [2]. According to studies, adult patients
with type 1 diabetes (DMT1) poses a less atherogenic
fasting lipid profile than people without diabetes, how-
ever, the incidence of cardiovascular diseases (CAD) is
paradoxically high in this group of patients [3-5]. Even
diabetic women were shown to develop CAD earlier
than non-diabetic women and they have CAD rates
approaching those of men with DMT1 [6, 7]. Changes in
the amount of circulating lipids, including the increase
in triglycerides and LDL cholesterol as well as the
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decrease in HDL are frequent also in the course of
DMT?2 [8]. However, it has been found that dyslipidae-
mia may precede DM by several years [9].

Numerous studies have shown that HDL cholesterol is
strongly and inversely associated with the occurrence of
cardiovascular events [10-14]. HDL cholesterol partici-
pates in the efflux of cholesterol efflux from peripheral
cells as well as in reverse cholesterol transport from
these cells to the liver [8]. According to studies, HDL
has antioxidative and anti-inflammatory properties. It re-
duces LDL oxidation [15], inhibits oxidized LDL-
induced MCP-1 (monocyte chemoattractant protein 1)
production and monocyte transmigration in a co-culture
of human aortic endothelial cells and human aortic
smooth muscle cells [16, 17] and blunts inflammatory
response of endothelial cells to TNF-a (tumour necrosis
factor-1) and IL-1 (interleukin 1) stimuli [18]. Finally, it
has been demonstrated to exert anti-thrombotic and
anti-apoptotic effects [19]. It has been shown that its
biological activity may change in various pathophysio-
logical states. In the past it was believed that high level
of HDL protects against the occurrence of cardiovascu-
lar disease, however new evidence suggest that in some
pathological conditions cholesterol HDL may lose its
protective properties and become pro-atherogenic. The
results of studies confirm that high levels of HDL chol-
esterol may not be always beneficial. Systematic review
and meta-regression analysis of randomized controlled
trials testing lipid modifying interventions provided evi-
dence that increasing circulating HDL-C did not reduce
coronary heart disease morbidity or mortality [20]. Also
The Initiating Dialysis Early and Late (IDEAL) study, in
which the efficacy of high to moderate dose statin regi-
men for the secondary prevention of cardiovascular dis-
ease was compared, and The European Prospective
Investigation of Cancer, Norfolk (EPIC-Norfolk) [21]
demonstrated that highly elevated HDL-C concentra-
tions did not protect against cardiovascular disease.

HDL becomes “dysfunctional” inter alia in type 2 dia-
betes [5], which may mean that also in pathological state
relative composition of lipids and proteins in HDL, as
well as enzymatic activities associated to HDL, such as
paraoxonase 1 (PON1) and lipoprotein-associated
phospholipase 11 (Lp-PLA2), are altered [22]. It has
been suggested that plasma HDL cholesterol is not
homogeneous, it comprises different particles varying in
size, density, apolipoprotein composition, and lipid con-
tent. The hypothesis of dysfunctional HDL-C in relation
to its activity and reverse cholesterol transport, has been
put forward in type 1 diabetes [23]. Generally increased
HDL-C does not translate into lower cardiovascular risk
in DMT1 patients, but rather an inverse association was
observed. However, the exact mechanisms of such rela-
tionship remain not fully elucidated. It has been
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suggested that different HDL subfractions relate to cor-
onary artery disease (CAD) incidence in a different
manner.

In this review, HDL dysfunction in diabetes, the im-
pact of HDL alterations on the risk diabetes develop-
ment as well as the association between disturbed HDL
particle in DM and cardiovascular risk is discussed.

Types of HDL particles obtained using various methods of
separation

Numerous studies indicated that HDL particles are
highly heterogeneous in size, shape, density and proper-
ties. Abundance of different methodologies used to ana-
lyse HDL subclasses resulted in the generation of
numerous classifications with do not relate with each
other. It is generally believed that at the beginning of its
formation, HDL is a discoidal and lipid poor [24]. Then,
Apo A-I acquires cholesterol and phospholipids via its
interaction with the ATP-binding cassette 10 (ABCAI)
leading to the formation of pre-f1 HDL particles [24].
These particles gradually accumulate more and more
cholesterol. Following the esterification by the enzyme
lecithin-cholesterol acyltransferase (LCAT) cholesterol is
transferred to the core of HDL particle, forming lar-
ger, spherical, a-mobility HDL particles, which may
undergo clearance by the hepatic scavenger receptor
[24]. Cholesteryl esters can be transferred to VLDL/
LDL for catabolism via cholesteryl ester transfer pro-
tein (CETP) enzyme.

HDL can be divided into various subclasses, according
to its density, size, electrophoretic mobility and apolipo-
protein cargo. The use of ultracentrifugation allows for
the separation of HDL2 (1.063-1.125 g/mL) and HDL3
(1.125-1.21 g/mL), while gradient gel electrophoresis al-
lows to receive HDL2b (9.7-12.0 nm), HDL2a (8.8—
9.7 nm), HDL3a (8.2-8.8 nm), HDL3b (7.8—8.2 nm) and
HDL3c (7.2-7.8 nm) or HDL1-HDLI10 (Lipoprint) [25].
Also. the obtaining of large HDL, medium HDL, small
HDL, spherical, discoidal HDL and many others is pos-
sible using various methods.

Proteins, which constitute important part of HDL par-
ticles are responsible for their structure and function.
Among the most important components of HDL choles-
terol there are apolipoproteins (e.g. ApoA-I, ApoA-II,
ApoE, Apo]), enzymes (e.g. LCAT, PON1; LpPLA2’ PAF-
AH, GSPx-3), lipid transfer proteins (e.g. PLTP, CETP),
acute-phase response proteins (SAA1, SAA4, alpha-2-
HS-glycoprotein), complement components and protein-
ase inhibitors (alpha-1-antitrypsin) and many other [25].

HDL levels and diabetes risk

Recent studies have indicated that cholesterol HDL may
directly alter glucose metabolism [26, 27]. Indeed, HDL
cholesterol promotes pancreatic B-cell insulin secretion
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and modifies glucose uptake in skeletal muscle as shown
in different experimental and human settings [27-30].
Therefore, low levels of HDL cholesterol has been
suggested to be associated with higher risk of type 2
diabetes in epidemiological studies [31, 32]. Moreover,
plasma HDL level increase has been proposed as a
therapeutic measure to reduce the risk of type 2 diabetes
[33-35]. However, the results of genetic studies evaluat-
ing the relationship between HDL cholesterol levels and
glycaemic control and risk of type 2 diabetes are con-
flicting [36-38]. Some studies demonstrated the rela-
tionship between HDL particles and lower risk of type 2
diabetes [22, 39, 40]. Hwang et al. [10] found an inverse
association between total cholesterol and HDL2 and fu-
ture development of type 2 DM and this relationship
was independent of well-established risk factors for type
2 diabetes. However, they failed to find any correlation
between HDL3 cholesterol and future diabetes risk. Also
Tabara et al. [41] suggested that high-density lipoprotein
(HDL) may exert an antidiabetes function. In their study
HDL2 cholesterol levels were inversely associated with
HOMA-IR (B = -0.169, p < 0.001) and type 2 diabetes
(OR = 0.96, p = 0.001 Opposite relationship was ob-
served in case of HDL3-C and HOMA-IR (p = 0.054,
p < 0.001) and type 2 diabetes (OR = 1.04, p = 0.181). In
turn, a longitudinal analysis demonstrated inverse rela-
tionship between HDL2-C and the exacerbation of insu-
lin resistance (f = -0.163, p < 0.001) and the inverse risk
of type 2 diabetes incidence (odds ratio = 0.98,
p = 0.006) [41].

It has been proposed that the deletion within ABCA1
may be associated with cholesterol accumulation within
cell membrane of beta cells and further results in the
hampering of the exocytosis of insulin from secretory
granules, and inhibition of insulin secretion [42, 43].
The mutation R230C in ABCA-1, which is associated
with reduced cholesterol efflux capacities, was demon-
strated to be more frequent in young persons with
DMT?2 [44]. Animal studies provided the explanation of
this phenomenon. It seems that cholesterol accumula-
tion in islet B-cells is the responsible for the pathology.

Moreover, beneficial, apoptosis-inhibiting effects of
HDLs on beta cells have also been demonstrated [45].
Fryirs et al. [46] revealed that the incubation of Min6
cells and primary islets with HDLs isolated from human
plasma or a constituent of discoidal reconstituted HDLs
(rHDLs) or apolipoprotein (apo) A-I or apoA-II en-
hanced insulin secretion up to 5-fold in a calcium-
dependent as well as time and concentration dependent
manner [46]. The observation that intravenous reconsti-
tuted HDL (rHDL) reduced plasma glucose in patients
with type 2 diabetes mellitus by increasing plasma insu-
lin and stimulating AMP-activated protein kinase in
skeletal muscle further supports the view that HDLs
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have the capacity to improve diabetic control and prob-
ably postpone the development of new diabetes via sev-
eral mechanisms [27]. According to Han et al. [30]
study, apo A-I was able to stimulate the phosphorylation
of the key metabolic regulatory enzyme AMPK and in-
creased glucose uptake in C2C12 myocytes. In turn,
Rapizzi et al. [47] reported that HDL-associated
sphingolipid S1P could enhance glucose uptake in skel-
etal muscle through transactivation of the insulin recep-
tor. HDL was reported to reverse the deleterious effects
of oxidized LDL on insulin secretion [48, 49]. Recently,
it has been shown that HDL can reciprocally increase
adiponectin expression in a PI3K-dependent way, which
offers a novel indirect way of glucose homeostasis regu-
lation [50]. The treatment with the apo A-I mimetic
peptide L-4F increased serum adiponectin levels and de-
creased IL-1P and IL-6 levels in obese mice and this was
accompanied by increased the presence of insulin-
sensitive adipocytes [51], improved insulin sensitivity
and improved glucose tolerance [52]. Van Linthout et al.
[53] reported a decrease in cardiac glycogen content fol-
lowing apo A-I gene transfer in an experimental model
of diabetic cardiopathy. They suggested that this effect
may be associated with Akt-glycogen synthase kinase
(GSK)-3p dependent pathway.

However, the recent Haase et al. [28] study demon-
strated that lifelong low levels of HDL cholesterol due to
genetic variation in HDL cholesterol-related genes were
not associated with increased risk of type 2 diabetes in
the general population. They also suggested that low
levels of HDL cholesterol per se do not cause type 2 dia-
betes and but they may be explained by reverse caus-
ation, due to a state of prediabetes prior to the diabetes
diagnosis. The results of large Schou et al. [38] study
also failed to find any association between loss-of-
function mutations in ABCA1 and ABCG1 and risk of
type 2 diabetes in 40,000 individuals. No relationship be-
tween HDL cholesterol related genes and type 2 diabetes
has also been reported in recent genome-wide associ-
ation studies and meta-analyses [54, 55]. Contrary to the
aforementioned results, smaller studies of genetic vari-
ation in ABCA1l (ATP-binding cassette transporter 1)
demonstrated that R230C variant was associated with in-
creased risk of type 2 diabetes [56], while loss-of-
function mutations in ABCA1 were proposed to correl-
ate with impaired [-cell function, but not with develop-
ment of type 2 diabetes [57]. Also, Mackey et al. [58]
study demonstrated that decreases in large HDL parti-
cles adjusted for confounders were significantly associ-
ated with the incidence of diabetes.

Influence of DM on HDL composition and level
The direct impact of insulin resistance on lipid metabol-
ism in type 2 diabetes DMT2 is quite well-known, while
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in DM type 1 the mechanisms related to insulin defi-
ciency and dyslipidaemia remain poorly understood and
controversial. According to studies, diabetes generally
promotes not only quantitative changes in the amount
of circulating lipids — particularly an increase in triglyc-
erides and LDL as well as a reduction in HDL but also
qualitative and kinetic in nature [59-61]. Decreased
plasma concentration, triacylglycerol enrichment, re-
duced phospholipids, ApoE and ApoM, glycation and in-
creased HDL catabolism are the main changes occurring
in diabetes [19]. Altered HDL composition in patients
with diabetes results in diminished ability to promote re-
verse cholesterol transport. Impaired cholesterol efflux
from adipose and hepatic cells is mainly related to in-
creased triglyceride and decreased cholesterol content in
HDL [62].

Miettinen et al. [63] demonstrated increased markers
of cholesterol absorption and decreased markers of chol-
esterol synthesis in patients with DM type 1 in compari-
son to control subjects, suggesting that the occurrence
of high cholesterol absorption and low cholesterol syn-
thesis in this group of patients with type 1 diabetes. The
relationship between gender and lipid levels in patients
with DMT1 was analysed by Maahs et al. [64]. They ob-
served that male type 1 diabetic subjects showed higher
content of large and lower content of small HDL-C par-
ticles than non-diabetic subjects, while DMT1 women
had smaller amount of large and higher amount of small
dense LDL lipoproteins and reduced LDL size [64].
However, it remains unclear whether the aforementioned
lipid abnormalities are due to impaired lipid metabolism
associated with DMT1 rather than with glucose control,
gender, insulin resistance, and non-regular lifestyle of
these patients, or by all these factors in combination.
The study of 127 patients with DMT1 demonstrated
higher levels of total HDL-C and the lowest density
HDL subfraction, apolipoprotein A-I, LPL activity, and
adiponectin levels in comparison to control subjects
(P < .05) [65]. Moreover, Calderon et al. found a rela-
tionship between adiponectin and LPL activity and total
HDL and its lowest density subfraction.

DM type 2 is associated with dyslipidaemia which in-
volves abnormalities in all types of lipoproteins [19, 66,
67]. According to studies, concentrations of HDL chol-
esterol are diminished in patients with diabetes mellitus
type 2 [68, 69]. Moreover, the predominance of small
dense HDL particles which undergo rapid catabolism
has been also reported [8, 68, 69].

Hypertriglyceridemia which appears in the course of
T2 diabetes mellitus is associated with insulin resistance,
hyperglycaemia and hyperinsulinemia. Insulin resistance
was shown to increase free fatty acids availability, while
hyperinsulinemia and hyperglycaemia promote triglycer-
ide synthesis via the activation of carbohydrate-
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responsive element-binding protein (ChREBP) [65] and
sterol regulatory element-binding transcription factor 1
(SREBF1c) [66], respectively and the consequent increase
in cholesteryl ester transfer protein (CETP) activation.
Enhanced CETP activity is associated with the enrich-
ment of HDL particles with triglycerides, which is
responsible for increased HDL catabolism. Hepatic lipase
(HL), which expression and activity is augmented in the
presence of hyperglycaemia and insulin resistance,
metabolizes triglyceride-rich HDL leading at first to the
formation of small HDL particles and then to their
accelerated clearance [70, 71]. Therefore, the amount of
circulating smaller HDL particles (HDL3) is increased,
while the number of large HDL particles (HDL2) is di-
minished [72]. Also, the content of cholesteryl esters is
diminished in HDL particles of DM patients [73]. The
alteration of HDL particle lipid composition results in
Apo A-I destabilization and its shedding form HDL dur-
ing lipolysis [19, 74]. The decrease in HDL cholesterol
levels may be also associated with the lowering of
plasma adiponectin levels in patients with insulin resist-
ance and type 2 diabetes. Verges et al. [75] demonstrated
a negative correlation between HDL-ApoA-I catabolism
rate and plasma levels of adiponectin, which was inde-
pendent of abdominal obesity, insulin sensitivity, age,
and sex and plasma lipids. Their finding suggests a dir-
ect impact of adiponectin on HDL metabolism, however,
the exact mechanism has not been unraveled. Moreover,
in patients with type 2 DM decreased plasma concentra-
tions of campesterol and increased levels of lathosterol
were observed which mirrors reduced cholesterol ab-
sorption and enhanced cholesterol synthesis [76, 77]. Al-
teration in HDL function and structure are also
associated with glycation and oxidation of HDL-
associated proteins, changes in gene expression and ac-
tivity of HDL-metabolizing enzymes. Prolonged inflam-
mation present in DM promotes changes in HDL
proteome. All these changes results in the loss of HDL
of its normal function and in its “transformation” into a
proatherogenic particle. In vitro studies have revealed
that HDL glycation is accompanied by the oxidation of
HDL lipids and results in diminished cholesterol efflux
and reduced HDL affinity binding to fibroblasts. [8, 78—
81]. Hyperglycaemia and glycation contribute to dis-
turbed cholesterol efflux, reduced expression of ABCA-1
[82] and scavenger receptor class B type I (SR-BI) [83]
and lower HDL antioxidative capacity. Moreover, glyca-
tion has been shown to decrease paraoxonase 1 (PON1)
activity and to inactivate LCAT. In vitro glycation of
HDL was also shown to hamper HDL ability to suppress
TNF-a and IL-1B production by lipopolysaccharide-
stimulated macrophages [84] as well as to reduce mono-
cyte adhesion to human aortic endothelial cells induced
by oxidized LDL [85, 86]. Nobécourt et al. [87]
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demonstrated that non-enzymatic glycation impaired the
anti-inflammatory properties of apolipoprotein A-I and
therefore it exerted deleterious effects on HDL key func-
tions. The presence of advanced glycation end products
(AGEs) induces changes in the conformation and surface
charge of HDL apolipoproteins and decreases the activ-
ity of HDL-bound enzymes, including lecithin-
cholesterol acyltransferase and paraoxonase-1 [86—88].
However, due to the fact that AGE levels in HDL after
in vitro glycation were 5- to 150-fold higher than after
in vivo glycation in T2D subjects [86, 87, 89] it is
difficult to confirm that such glycation of HDL exerts a
direct effect on its anti-inflammatory effects in DMT?2.

Apart from glycation, also oxidative modifications of
HDL are associated with disturbed HDL function. Nega-
tive correlation between HDL oxidation and ABCAI-
dependent cholesterol efflux was observed by Zeng et al.
[90] who suggested that apolipoprotein A-I was a select-
ive target for myeloperoxidase-catalysed oxidation and
its functional impairment was frequent in subjects with
cardiovascular disease. Other studies have indicated that
oxidative modifications of Apo-Al affect two amino
acids (Tyr-166 and Met-148) which are placed within
lecithin—cholesterol acyltransferase binding site thus
preventing LCAT binding and abolishing its activity [91,
92]. Also paraoxonase 1 is sensitive to oxidation and it
becomes inactive following HDL oxidation [93]. Diabetes
is associated with the presence of prolonged inflamma-
tion. According to studies, inflammation changes HDL
proteome converting it from an antiatherogenic particle
to a raft of immunological proteins [8]. During acute
phase response, Apo A-I content was observed to be di-
minished due to its replacement by acute phase protein
- serum amyloid A [94]. Moreover, the activity of HDL
antioxidant enzymes, including PON1, PAF-AH and
LCAT, is also reduced during an acute phase response
[94]. It has been recently hypothesized that the relative
distribution of Lp-PLA2 between LDL and HDL
determines whether it exerts pro- or anti-inflammatory
effects - Lp-PLA2 in HDL is anti-inflammatory while
Lp-PLA2 associated to apoB-containing lipoproteins is
pro-inflammatory [95].

The presence of chronic inflammatory state promotes
the transformation of HDL into proinflammatory par-
ticle which no longer mitigates inflammatory response
stimulated by oxidized LDL, but it aggravates the situ-
ation [96]. Moreover, Chiba et al. suggested that HDL
proteasome change by the inflammation results in HDL
ability to bind components of the extracellular matrix,
such as vascular proteoglycans. Also Dullaart et al. [97]
demonstrated reduced PON-1 activity, HDL cholesterol
and apoA-I in T2DM (all p < 0.05). Despite the lack of
HDL particle concentration change, their distribution
was found to be different. Large & medium HDL
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particles, and HDL particle size were decreased, whereas
small HDL particles were increased in T2DM (all
p < 0.05). It is noteworthy that many of the aforemen-
tioned lipids-related alterations are present before the
onset of diabetes mellitus as a result of insulin-resistant
metabolic syndrome [19].

HDL subfractions and cardiovascular risk in DM patients
Numerous large epidemiologic studies and clinical trials
indicate that the mortality of CAD reasons is much
higher in patients with DMT2, even after the adjustment
for age, ethnicity or the presence of risk factor [98, 99].
Haffner et al. [100] found that diabetic persons with no
history of myocardial infarction (MI) had equivalent
rates of CAD mortality to non-diabetic individuals with
a MI history. Moreover, diffuse, severe atherosclerotic le-
sions were observed in patients with diabetes mellitus.
Potential mechanisms responsible for these worse out-
comes in patients with T2D have not been fully eluci-
dated. However, it was suggested that strict glycaemic
control alone can only slightly improve diabetes-related
cardiovascular events [101], Also dyslipidaemia was pro-
posed as a causal factor of diabetic atherosclerosis as
well as clinical outcomes. Also, individuals with type 1
diabetes show a considerably increased risk for cardio-
vascular disease in comparison to the general population
[102]. Costacou et al. [24] demonstrated a smooth linear
inverse association between HDL-C and CAD incidence
in men. However, in DMT1 women an apparent increase
in risk is observed below an HDL-C of 50 mg/dL as well
as above 80 mg/dL. Moreover, their findings revealed
that HDL3 subfraction was mainly associated with CAD
risk. Asztalos and Schaefer [103] demonstrated deficien-
cies in the al and pre-al-3 HDL subspecies and in-
crease in the a3 HDL subspecies among individuals with
CAD in comparison to normal controls. Their results
may suggest a disturbance in the progressive increase of
HDL particle size in those with CAD.

Some cross-sectional and prospective studies have
suggested that HDL2 may be more protective than
HDL3 [104-106]. Gordon et al. [107] revealed that
young patients with T2DM exhibited decreased
phospholipid content in fractions containing large HDL
particles, which inversely correlated with pulse wave vel-
ocity (PWV) (P < 0.001). However, no relationship was
observed between HDL-C and PWYV. They also reported
changes in 7 out of 45 identified proteins in the T2D
group, including apolipoprotein (apo) A-II, apoE, and
paraoxonase-1 (p < 0.05). Diminished ApoE content in
large HDL particles may have an atherogenic effect, due
to the fact that large, ApoE-rich HDL usually prevents
LDL binding to proteoglycans in the vessel wall [107].
The content of ApoM which mediates the enrichment of
HDL in sphingosine-1-phosphate (which promotes
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arterial vasodilation by stimulating endothelial nitric
oxide formation [108]) was also reduced in their study.
Gordon et al. [107] recommend the analysis of HDL
composition, rather than HDL-C level as an useful tool
in the evaluation of cardiovascular risk in this popula-
tion. In patients with DMT2, reduced antioxidative
properties of HDL due to the presence of hypergly-
caemia and triacylglycerol enrichment has been reported
[109]. In comparison to normolipidemic, non-diabetic
controls, in diabetic patients specific antioxidative activ-
ity of small dense HDL3b and 3c particles was reduced
up to 47% (on a particle mass or particle number basis).
Moreover, plasma 8-isoprostanes were found to be con-
siderably elevated (2.9-fold) in diabetic patients and they
negatively correlated with specific antioxidative activity
of HDL3 subfractions [109]. Perségol et al. [110] demon-
strated the inability of HDL from type 2 diabetic patients
to counteract the inhibitory effect of oxidised LDL on
endothelium-dependent vasorelaxation. Results of their
study suggest that HDL are less atheroprotective in type
2 diabetic patients than in control subjects. In turn, Sor-
rentino et al. [111] reported weaker stimulatory effect on
endothelial nitric oxide synthesis in patients with type 2
diabetes. However, extended-release niacin therapy im-
proved the capacity of HDL to stimulate endothelial ni-
tric oxide, to decrease superoxide production, and to
stimulate endothelial progenitor cell-mediated endothe-
lial repair. Chinese prospective study of patients with
stable CAD indicated that high levels of large HDL-C
was inversely associated with cardiovascular risk includ-
ing traditional risk factors, severity of CAD, and future
cardiovascular outcomes [112]. Moreover, high large
HDL-C negatively and independently correlated with the
occurrence of major adverse cardiovascular events
(MACEs), after adjustment for multiple confounders.
The present study provided potential evidence that HDL
subfraction analysis might prove useful in CAD risk as-
sessment. However, in this study only 25% of patients
had type 2 diabetes [112]. Pennathur et al. [113] study
demonstrated increased levels of HDL modified by prod-
ucts of the myeloperoxidase system in atherosclerotic le-
sions and in plasma of coronary artery disease patients.
Some of these modifications (i.e. chlorination) impair
ABCA-1-specific cholesterol efflux [114, 115].

Conclusions

In normal state HDL exerts various antiatherogenic
properties, including reverse cholesterol transport, anti-
oxidative and anti-inflammatory capacities. However,
these properties are compromised in patients with dia-
betes mellitus (DM), due to oxidative modification and
glycation of the HDL protein as well as the transform-
ation of the HDL proteome into a proinflammatory pro-
tein. Numerous studies confirm that the ability of HDL
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to suppress inflammatory signals is significantly reduced
in this group of patients. However, the exact underlying
mechanisms remains to be unravelled in vivo. The un-
derstanding of pathological mechanisms underlying
HDL dysfunction may enable the development of ther-
apies targeted at specific subpopulations and focusing at
the diminishing of cardiovascular risk.
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