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Abstract

Atherosclerosis represents a significant cause of morbidity and mortality in both the developed and developing
countries. Animal models of atherosclerosis have served as valuable tools for providing insights on its aetiology,
pathophysiology and complications. They can be used for invasive interrogation of physiological function and
provide a platform for testing the efficacy and safety of different pharmacological therapies. Compared to studies
using human subjects, animal models have the advantages of being easier to manage, with controllable diet and
environmental risk factors. Moreover, pathophysiological changes can be induced either genetically or
pharmacologically to study the harmful effects of these interventions. There is no single ideal animal model, as
different systems are suitable for different research objectives. A good understanding of the similarities and
differences to humans enables effective extrapolation of data for translational application. In this article, we will
examine the different mouse models for the study and elucidation of the pathophysiological mechanisms
underlying atherosclerosis. We also review recent advances in the field, such as the role of oxidative stress in
promoting endoplasmic reticulum stress, mitochondrial dysfunction and mitochondrial DNA damage, which can
result in vascular inflammation and atherosclerosis. Finally, novel therapeutic approaches to reduce vascular damage
caused by chronic inflammation using microRNA and nano-medicine technology, are discussed.
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Background
Atherosclerosis is responsible for acute myocardial
infarction and cerebrovascular accidents, accounting for
the majority of cardiovascular deaths. It is a chronic
inflammatory disease characterized by the development
of complex atherosclerotic plaques, leading to hardening
and narrowing of the arterial lumen. Atherosclerotic
plaque formation is initiated and sustained by a combin-
ation of endothelium dysfunction and chronic exposure
to cardiovascular risk factors that promote vascular
inflammation, such as hyperlipidemia, hypertension,
smoking, male gender and diabetes.

Among these, the single most important risk factor is
high plasma low density lipoprotein (LDL) level, of
which a monogenetic cause is familial hypercholesterol-
emia [1]. Other risk factors are important in individuals
with normal LDL levels. In the presence of a LDL level
permissive of atherosclerotic plaque formation, these
risk factors are important in explaining the development
and progression of atherosclerotic lesions [2, 3]. Con-
versely, these are less important in individuals with very
low LDL levels, who are unlikely to develop atheroscler-
osis irrespective of other risk factors [4]. With this in
mind, cholesterol loading in the lesion-containing foam
cells has been the focal point of intense research and has
been studied extensively using different animal models.
The extent of cholesterol loading is the result of lipopro-
tein uptake and lipid efflux in foam cells has been
targeted therapeutically to reduce lesion size [5].
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LDL accumulation
Excess LDL in plasma accumulate in the sub-
endothelial space of arterial wall and undergoes oxi-
dation to become oxidized LDL (oxLDL) [6]. This
then triggers an inflammatory response and induces
the expression of chemotactic protein such as vascu-
lar cell adhesion molecule-1 (VCAM-1), E-selectin
and P-selectin in the endothelium [7, 8]. The expres-
sion of adhesion molecules attracts blood cells into
the injured arterial wall, with monocytes being the
most prominent cell type [9]. Upon migration into
the intimal layer, monocytes differentiate into macro-
phages which avidly internalize oxLDL and become
foam cells themselves [10].
Foam cells present antigens to immune cells, such as

circulating monocytes and T-cells, whose activation
contributes critically to plaque development [11]. They
also secrete mediators to perpetuate the inflammatory
process in the arterial wall and to stimulate migration of
smooth muscle cells from the tunica media into sub-
endothelial space. Mediated by platelet derived growth
factor, smooth muscle cells exhibit abnormally high pro-
liferation rates and secrete extracellular matrix proteins
that contribute to fibrous cap formation [12, 13]. The fi-
brous cap protects the core of the plaque from circulat-
ing blood cells, especially platelets that are responsible
for the thrombosis associated with plaque rupture. This
maladaptive response of a non-resolving inflammation is
the driving force of atherosclerotic plaque development.
It is worth noting that the SMCs from different regions
of the microvasculature have different developmental
origins [14], which can contribute to site-specific athero-
sclerosis responses [15].
During plaque evolution, macrophages proliferate and

undergo apoptosis and efferocytosis [16, 17]. Depending
on the efficiency of efferocytosis, apoptotic cells may be
removed, leading to reduction of lesion size [18], or they
may accumulate and be subjected to secondary necrosis,
producing a necrotic core characteristic of advanced
plaques. The accumulation of apoptotic bodies will
enhance the plaque instability by triggering inflammation
[19, 20].
Whilst foam cells are the most abundant leukocytes

within the atherosclerotic lesion, studies in mouse
models have implicated other cell types, including neu-
trophils, T-and B-cell, and mast cells, in atherogenesis
[21, 22]. These cells, though contribute little to the
lesion mass, can influence atherosclerosis by secreting
variety of proteins that regulate other cells or compo-
nents within the plaque. Experiment studies using mice
have demonstrated that among the subsets of T-cells,
Th1 cells and natural killer T-cells are notably pro-
atherogenic, whilst the role of Th2 and Th17 cells are
less well understood [23–25].

Plaque rupture
Plaque rupture is responsible for the adverse conse-
quences of ischemic events in acute myocardial infarc-
tion and cerebrovascular accidents and death [26]. At
advanced stages of atherosclerosis, rupture of vulnerable
plaques exposes their thrombogenic compounds, thereby
leading to luminal thrombosis [27]. Macrophage-derived
proteases, especially metalloproteases, can destabilize
plaques, but the exact underlying mechanism of plaque
vulnerability remained incompletely elucidated [28].

Animal models of atherosclerosis
The first key piece of evidence that atherosclerosis is
inducible in laboratory animals was provided by
Ignatowski in 1908, who demonstrated lesion formation
in the aortic wall of rabbits that were fed a diet enriched
in animal protein (mainly meat, milk, and egg yolk).
Since then, various animal species, such as rabbits, mice,
rats, guinea pigs, hamsters, birds, dogs and non-human
primates, have been used for experimentation. Of these,
rodents, swine and rabbits have provided crucial infor-
mation for the pathophysiological mechanisms under-
lying the initiation and subsequent development of
atherosclerotic plaques. In spite of the many differences
between the animal models, all of these demonstrate the
requirement of high blood cholesterol levels for plaque
development. The observations of this remarkable
characteristic supported the discovery of the essential
role of cholesterol in atherosclerosis development.
Animal models have been extensively used for the study
of human cardiovascular diseases [29–40], and their use
has led to opportunities for translational application
[32, 41–45]. In this review, the different models for
examining atherosclerosis, their own advantages and
disadvantages (Table 1) and the molecular pathways
involved (Table 2), will be discussed in turn.

Table 1 Advantages and disadvantages of mouse models for
studying atherosclerosis

Advantages Disadvantages

Ease of genetic manipulation Toxic diet needed to induce
atherosclerosis in wild-type mice

Low maintenance cost Different lipid metabolism
compared to humans: high HDL,
no CETP

Short generation time means less
time consuming for research
projects

Differing cardiovascular anatomy
and physiology with different
predisposed site for the
development atherosclerosis

Wide availability Small body size limits frequent
blood collection and increases
difficulty of dissection of small
arteries
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Mouse
With its small size and ease of genetic manipulation, the
mouse is currently the most frequently used model in
atherosclerosis research [46]. Development of athero-
sclerosis is influenced by a number of genes, which
interact with each other and the environment to affect
the disease phenotype [47]. Manipulation can take place
for single genes, and indeed in a time-dependent man-
ner, which permits the elucidation of the molecular
mechanisms operating in different phase of plaque
evolution, whilst the manipulation of gene expression
in specific cell types has increased our understanding
of the contributions of different immune cells to
atherosclerosis.

Dietary models
The first mouse model was developed by Wissler and
coworkers in 1960s [48]. They fed the mice with a diet of
high fat 30%, high cholesterol 5% and cholic acid 2%. This
diet successfully promoted hypercholesterolemia, and
induced the formation of fatty streaks in different vascular
regions [49]. However, the high fat diet induced a high level
of acute inflammatory changes, but did not simulate the
chronic low-grade inflammatory environment observed in
human atherosclerosis [50]. Also, the pro-inflammatory diet
as highly toxic, which led to weight loss and increased the
susceptibility of the animals to infections.
A less toxic diet of 15% fat, 1.25% cholesterol and 0.5%

cholic acid was introduced, resulting in high variability
of diet-induced atherosclerosis in different strains of
mice [51]. The most susceptible strain was C57BL/6,
which developed mild hypercholesterolemia — around
200 mg/ml — and fatty streak lesions in the aortic root
after 3–9 months of fat feeding [52]. However, the lesion
was not comparable to that observed in humans, with
small lesions found in the aorta, consisted almost

exclusively of macrophages and did not progress to
fibrous plaques. The difference in morphology of the
plaque formation between mouse and human hampers
data extrapolation. Nevertheless, from experiments
conducted in dietary models, a number of genetic loci
that increase the susceptibility to atherosclerosis has
been identified. An example is Ath-1, which was mapped
to the short arm of chromosome 1 [53].
Recent experiments in germ-free mice generated by

feeding with an antibiotic cocktail have demonstrated
dietary lipid phosphatidylcholine (lecithin) was identified
by a metabolomics approach, and these were subse-
quently shown to be predictive of atherosclerosis in
humans, highlighting the role of intestinal microbiome
in regulating plasma lipoprotein homeostasis [54].

ApoE knockout and LDLR-deficient models
Given the toxicity of high fat diet and differences in lesion
morphology, limitations of using wild-type mice for study-
ing atherosclerosis were recognized. The development of
genetically modified mice represented a breakthrough.
Gene knockout and knock-in techniques, together with
the ability to control the spatial and temporal patterns of
gene expression, have proven useful for studying athero-
sclerosis. The first genetically modified mouse model
developed was the Apolipoprotein E (ApoE) knockout
model [55]. ApoE is a structural component of all lipopro-
tein except for LDL and is a critical ligand for the hepatic
clearance of plasma lipoproteins mediated by LDLR and
LDLR-related protein [56–58]. ApoE knockout mice ex-
hibited significant hypercholesterolemia (400 mg/dl, which
represents a five-fold increase in plasma cholesterol level
compared to wild type mice) despite being on a low fat
diet [59–61]. An advantage of using ApoE knockout mice
is that the high toxic diet can be avoided. Moreover, it
shares greater degrees of similarity in the atherosclerotic

Table 2 Molecular pathways involved in atherosclerosis

Molecular mechanisms Role in Atherosclerosis References

Expression of vascular cell adhesion molecule-1 (VCAM-1),
E-selectin and P-selectin

Inflammatory response induced by LDL oxidation [7, 8]

Nuclear factor-kappa B (NF-κB) activation Chemotaxis via regulation of chemokines, such as CCL2, CCL5,
CCL8, and CXCL9

[166, 169]

Release of platelet derived growth factor Fibrous cap formation [12, 13]

CHOP activation Macrophage apoptosis via endoplasmic reticulum stress [107, 108]

Pattern recognition receptor activation Macrophage apoptosis via activation of CD36-TLR2 pathway [111, 112]

Activation of mitochondrial, Ca2+-dependent pathways Vascular smooth muscle cell apoptosis via calpain/mPTP/
cytochrome C/caspase-3 and apoptosis-inducing factor

[140]

cytochrome c release and activation of caspase-9 and the
effector caspases

Macrophage apoptosis induced by cholesterol loading [141]

Toll-like receptor activation Immune activation through recognition of mitochondrial DNA,
which can act as damage-associated molecular patterns (DAMPs)

[148]

Upregulation of transient receptor potential cation (TRPC)
channels

VSMC, migration, proliferation and apoptosis; neointimal
proliferation

[158, 160–162]
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development to humans compared to wild-type models.
There is dramatic shift in plasma lipoprotein profile, with
the proatherogenic VLDL as the most abundant circulat-
ing lipoprotein, similar to type II hyperlipidemia in
humans [62]. Spontaneous development of atherosclerotic
lesions in several vascular beds, predominantly in the
aortic root, aortic arch and different branch point along
the aorta, are observed [63]. Another advantage is the
rapid development of lesions compared to wild-type.
When ApoE knockout mice are fed with a high fat diet
[64, 65] (Western type diet, which contains 0.15% choles-
terol, 21% fat derived from milk and without the use of
cholic acid), they exhibit high plasma lipid level of over
1000 mg/dl and develop complex fibrous plaques in the
aortic sinus after 10–14 weeks of diet.
However, ApoE knockout mice has its own drawbacks

which limits the extrapolation of data derived from this
model to humans. Firstly, the lipid metabolism is dis-
similar, with the majority of the plasma cholesterol as
VLDL but not LDL as observed in humans [66, 67].
Secondly, ApoE was found to provide extra athero-
protective properties in addition to mediating lipoprotein
clearance, by virtue of its anti-oxidative, anti-proliferative
and anti-inflammatory actions [68]. Therefore, athero-
sclerosis in ApoE knockout model may be independent of
plasma lipid levels. Conversely, low levels of ApoE
expressed in adrenal cells can reduce the severity of
atherosclerosis without affecting plasma lipid levels in
ApoE-deficient mice [69].
To overcome the problems of the above model, LDLR

deficient mouse model was developed. Compared to
ApoE, LDLR has fewer functions and therefore the
effects due to its absence are more easily attributed to
lipoprotein homeostasis than other processes such as
cell proliferation or inflammation [70]. LDLR deficiency
impairs lipoprotein uptake and clearance, resulting in a
greater preponderance of LDL as the cholesterol-
carrying plasma lipoprotein. Compared to ApoE knock-
out mice, this model shows a milder plasma cholesterol
increase of 250 mg/dl when fed with standard low fat
diet and the elevated lipoprotein is mainly LDL [71].
Whilst on high fat diet, LDLR-deficient animals devel-
oped severe hypercholesterolemia of 900 mg/dl with
accumulation of VLDL and LDL, as well as extensive
atherosclerosis [72].
Compared with ApoE deficiency, the absence of func-

tional LDLR in humans is more common and leads to
familial hypercholesterolemia, greatly increasing the car-
diovascular risk [73]. This model shares the characteris-
tics observed in human familial hypercholesterolemia,
including the lesions in aortic valves and the aortic root
[74]. This model has been useful for examining the
relationship between diabetes and atherosclerosis, which
often co-exist [72]. It was found that LDLR deficient

mice were more prone to obesity and insulin resistance
than ApoE deficient mice.
However, the LDLR model is imperfect with its own

shortcoming. Firstly, compared with the ApoE knockout
mice, the LDLR deficient mouse model is more resistant
to injury-induced neointimal formation [75]. Therefore,
ApoE knockout mice remains the better alternative for
investigating the molecular mechanisms underlying
restenosis following angioplasty [76]. Secondly, limited
lesions developed only in older LDLR deficient mice
with standard diet [77, 78]. Consequently, high fat diets
with different levels of cholesterol have been employed
to induce more significant atherosclerotic changes [79].
With a variety of dietary cholesterol intake, this model
cannot be standardized across models generated by
different laboratories.

Advantages and disadvantages of mouse models
The advantages of using small sized animals over larger
animals are lower costs to purchase, breed, feed and
maintain. The use of antibodies and drugs for interven-
tion becomes more affordable with its small size.
Another advantage is its rapid growth rate and short
generation time [80]: it takes 6 to 8 weeks for the mouse
to reach sexual maturity and approximately an add-
itional 3 weeks for gestation [81]. It is relatively easy to
control multiple genes by interbreeding given the wide
availability of inbred strains [82], or using genetic knock-
out techniques to elucidate the role of individual genes
in atherosclerosis [83]. The ease of genetic manipulation
comes in the well-defined genetic makeup and availabil-
ity of inbred strains.
The major limitation of mouse models is their natural

resistance to atherosclerosis for several reasons. Firstly,
cholesterol metabolism and lipoprotein pattern are
different from those of humans due to the absence of
cholesteryl ester transfer protein (CETP) [84], a carrier
that facilitates the transport of cholesteryl esters and
triglycerides between different lipoproteins [85]. Thus,
mice usually have a lower plasma cholesterol levels of
60–100 mg/dl compared to humans, with the high
density lipoprotein being the major circulating lipopro-
tein [86]. This contrasts with the deleterious LDL, which
is the predominant form found in plasma of humans
[87]. Thus, genetically-modified mice have been used to
induce hypercholesterolemia, although concerns have
been raised because this may be non-physiological and
the pathogenesis may differ from that of human athero-
sclerosis [88].
Although the comparatively smaller size of mice results

in more convenient use for experimentation, it also limits
many aspects of practical investigation. For example, the
coronary arteries are too small for visualization. Moreover,
blood collection can be difficult [89]. There is also
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considerable difference in the anatomy of the cardiovascu-
lar system between mice and humans. The arterial intima
consists of only endothelium overlying the internal elastic
lamina without smooth muscle cells or connective tissues
found in humans [90]. Moreover, the tunica media is less
thick and the vasa vasorum is absent in mice [91].
The morphology of atherosclerotic lesions observed in

mice is different from that of humans, in that the thick
fibrous cap is absent [92]. In mice, vasa vasorum is not
needed since the thin layers of tunica intima and intima
do not pose a significant barrier to oxygen diffusion [91].
The absence of the vasa vasorum explains the lack of in-
growth of neovessels into the base of the lesions. The
neovessel is thought to be derived from the vasa
vasorum, considered as an important entry path for im-
mune cells and contributes to chronic inflammation and
development of the necrotic core [93]. The predilection
sites for atherosclerosis development in mouse models
are the aortic sinus and innominate artery, whereas the
coronary arteries are commonly affected in humans.
Unstable plaque is rarely observed in mouse models,
and it is therefore difficult to examine plaque rupture
and overlying luminal thrombosis, which is the direct
cause of acute ischemic events responsible for cardiovas-
cular deaths, using these systems [94–96].

Recent advances
Oxidative stress, dysfunction of intracellular organelles
and vascular inflammation
Recent research efforts have focused on elucidating the
mechanisms by which dysfunction of two intracellular
organelles, the endoplasmic reticulum (ER) and the
mitochondrion of various cell types, promotes vascular
inflammation and atherosclerosis.

ER stress
The ER is responsible for protein synthesis, proper fold-
ing, maturation and assembly prior to further processing
by the Golgi apparatus [97]. The highly oxidative envir-
onment within the ER lumen facilitates the formation of
tertiary and quaternary structures, aided by chaperone
proteins and a high concentration of luminal Ca2+ to
facilitate their interactions [98]. Abnormalities in these
processes can lead to misfolding or unfolding of pro-
teins, which then accumulate within the ER lumen. This
would increase ER stress, thereby activating the unfolded
protein response (UPR) [99]. The UPR is a normal adap-
tive and protective mechanism to reduce the rate of pro-
tein synthesis, increase folding ability of proteins and aid
misfolded or unfolded protein to cellular degradation
pathways [100].
Prolonged ER stress of different cell types involved in

atherosclerosis, including macrophages, VSMCs and
endothelial cells, has been observed in atherosclerosis

[101–103]. In macrophages, LDL and cholesterol are
transported from late endosomes to the ER, where ester-
ification of cholesterol and formation of lipid droplets
occur [104]. In macrophages of atherosclerotic plaques,
the esterification process is greatly reduced, which is re-
sponsible for cholesterol accumulation in foam cells
[105]. It has been shown that UPR activation of macro-
phages takes place during the different stages of athero-
sclerotic lesion development in ApoE knockout mice
[106]. Prolonged ER stress leads to macrophage apop-
tosis associated with expression of the UPR sensor C/
EBPα-homologous protein (CHOP). CHOP inactivation
could reduce the rate of macrophage apoptosis and
plaque necrosis, suggesting that targeting of the UPR
has the potential to hinder the progression of athero-
sclerosis [107, 108]. In early plaques, macrophages are
efficient in clearing cells which have undergone apop-
tosis [109]. However, in advanced plaques, they are un-
able to do so [110], resulting in the formation of
necrotic core [111]. Other mechanisms contributing to
apoptosis of macrophages require activation of pattern
recognition receptors (PRRs) of the innate immune sys-
tem by oxidized lipids [111, 112]. PRR activation induces
apoptosis via the CD36-TLR2 pathway [112]. In this
pathway, the enzyme NADPH oxidase plays a key role in
mediating oxidative stress, activation of the double-
stranded RNA-dependent protein kinase, which induces
CHOP and apoptosis [113].
ER stress in endothelial cells can be activated by

shear stress [114, 115] or oxLDL [116]. This results in
increased oxidative stress and therefore increased oxidation
of sarcoplasmic/endoplasmic reticulum Ca2+-dependent
ATPase, leading to atherogenesis [116]. In VSMCs, a
number of cellular stressors, such as cholesterol loading,
can initiate ER stress [117, 118], thereby activating
apoptosis [119]. This may then affect collagen synthesis ad-
versely. Homocysteine, which is raised in hypertension and
diabetes, can initiate UPR [117]. ER stress plays a role in
cardio-metabolic disorders such as hypertension and dia-
betes, and partly explains why atherosclerosis is worsened
in the presence of these co-morbid conditions [120–122].
The use of mouse models has discovered novel mecha-
nisms by which traditional pharmacological agents act to
exert their vascular protective effects through modifying ER
stress response [122–124]. For example, recent experiments
have demonstrated that metformin, a commonly used
anti-diabetic drug, protected endothelial function in obese,
diabetic mice by inhibiting ER stress [120].

Mitochondrial dysfunction
The mitochondria are the cellular powerhouses because
of their ability to generate ATP by oxidative phosphoryl-
ation. They have other functions such as, redox status,
reactive oxygen species (ROS) production and regulation
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of cellular apoptosis [125]. They are the only intracellu-
lar organelle apart from the nucleus to contain DNA.
During ATP synthesis, electron is transferred from com-
plex I to complex IV of the respiratory chain, which
leads to pumping of protons from the mitochondrial
matrix into the intermembrane space [126]. Much of the
cellular ROS is derived from the mitochondria, mostly
from complex I and complex III and enzymes including
the alpha-ketoglutarate dehydrogenase complex and those
participating in fatty acid beta-oxidation [127–130]. Pro-
duction of oxygen free radicals is more efficient by reverse
electron transfer dependent on succinate (through com-
plex I to NAD+) than forward electron transfer with
NADH [131]. This reverse electron transfer is an import-
ant mechanism of ROS production in many pathological
conditions such as hypertension, playing an important role
in the development of atherosclerosis [132]. Mitochon-
drial ROS can itself increase its own production in a
positive feedback loop, which is termed ROS-induced
ROS release (RIRR) [133, 134]. This is recognized to play
a key role initiating mitochondrial depolarization [134].
Elevated ROS production can damage a number of

macromolecules within the cells, such as proteins, lipids
and mitochondrial DNA of different cell types, contrib-
uting to atherosclerosis development (Fig. 1). For
example, 4-Hydroxynonenal (HNE), an end-product of
membrane lipid peroxidation [135], increased ROS
production, producing mitochondrial dysfunction and
inducing VSMC apoptosis [136]. Reperfusion after is-
chaemia, which a consequence of atherosclerotic disease,
can lead to opening of the mitochondrial permeability
transition pore (MPTP) [137, 138]. MPTP opening tran-
siently leads to depolarization of the mitochondrial
membrane potential. However, prolonged opening is
harmful, as it leads to swelling of the mitochondrial
matrix, and rupture of the outer membrane, releasing

pro-apoptotic factors to initiate apoptosis [139]. VSMC
apoptosis induced by oxidize LDL occurs via two distinct
mitochondrial, Ca2+-dependent pathways, calpain/mPTP/
cytochrome C/caspase-3 and apoptosis-inducing factor
[140]. Other cell types such as macrophages also demon-
strate mitochondrial dysfunction. Thus, cholesterol load-
ing in macrophages triggers cytochrome c release and
activation of caspase-9 and the effector caspases, leading
to macrophage apoptosis [141]. Moreover, oxLDL can
increase the release of peroxyl radicals, inducing both
mitochondrial depolarization, dysfunction and cell lysis in
macrophages [142].
There has been a recent interest in the consequences

of mitochondrial DNA damage in atherosclerosis. The
relationship between mitochondrial DNA damage and
oxidative stress has been studied in detail using genetic-
ally knockout mice with expressing a proofreading-
deficient version of the mitochondrial DNA Polymerase G
(POLG) [143, 144]. Mitochondrial DNA damage occurs
early in atherogenesis [145]. Mice with double knockout
of ApoE and POLG accumulate mitochondrial DNA
damage, which promoted atherosclerosis and was associ-
ated with the formation of vulnerable plaques [146]. In
ApoE-deficient recipients of mutator-mouse bone mar-
row, fibrous cap thinning and increased necrotic core,
which are characteristic of vulnerable plaques, were
observed [147]. It is thought that mitochondrial DNA can
act as damage-associated molecular patterns (DAMPs),
which are recognized by Toll-like receptors (TLRs). TLRs
can activate the innate immune system [148].

Current treatment options and complications
The mainstay treatment options for occlusive vascular
disease are stent insertion or bypass grafting. However,
significant complications such as stent thrombosis,
re-stenosis or vein graft failure can arise [149–151].
There is therefore a need to elucidate the molecular
mechanisms underlying these harmful processes in order
to devise ways to prevent them. In recent years, the role
of oxidative stress, endoplasmic reticulum stress and
mitochondrial dysfunction in promoting neointimal
proliferation has been intensively studied [152]. VSMCs,
the main component of the neointima, are capable of
switching from a quiescent and contractile to a prolifera-
tive phenotype [153]. The latter is responsible for
luminal occlusion. Increased ROS release causes
neointimal hyperplasia by promoting VSMC migration
and proliferation, as well as collagen deposition within
the extracellular matrix [16, 154, 155]. Altered Ca2+

signalling plays a critical role in these processes [156,
157]. For example, L-type Ca2+ channels are downregu-
lated and transient receptor potential cation (TRPC)
channels are upregulated in VSMCs [156]. Of the
TRPCs, the Ca2+-permeable TRPM2 channel was

Fig. 1 The role of mitochondrial dysfunction in promoting
atherosclerosis. OxLDL: oxidized LDL. MtDNA: mitochondrial DNA.
ROS: reactive oxygen species. RIRR: ROS-induced ROS release. VSMC:
vascular smooth muscle cell
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suggested to be a sensor of oxidative stress [158], and its
activation by ROS leads to intracellular Ca2+ overload
inflammation [159], VSMC, migration, proliferation and
apoptosis [158, 160, 161]. Another TRPC isoform,
TRPC1, has also been implicated in neointimal prolifera-
tion [162].

Future therapeutic approaches: microRNAs and
nanoparticle delivery
The roles of microRNAs in atherosclerosis have been
the focus of research in recent years [163]. The use of
this model has led to novel therapeutic approaches.
MicroRNAs are non-coding RNAs involved in post-
transcriptional regulation of genes by RNA silencing
[164]. Their generation is under tight control spatially
and temporally. Recent work has demonstrated their regu-
lation of flow-dependent vascular remodelling [165]. It ap-
pears that some microRNAs, such as miR-10a, miR-19a,
and miR-23b are inducible by shear stress and play a
protective role in atherosclerosis [166–168]. Other micro-
RNAs, such as MiR-146a and miR-181b, have anti-
inflammatory properties by inhibiting the translation of
tumor necrosis factor (TNF) receptor-associated factor 6
(TRAF6) and importin α3. This results in inhibition of nu-
clear factor-kappa B (NF-κB) activity, which is critical in
regulating the expression of several chemokines, such as
CCL2, CCL5, CCL8, and CXCL9 [166, 169]. In a recent
study, polyethylene glycol-polyethyleneimine nanoparticles
were used as vectors for microRNA delivery targeting E-
selectin of inflamed endothelium of ApoE-deficient mice,
which ameliorated endothelial inflammation and athero-
sclerosis [170]. Phosphatidylserine-based nanoparticles
delivering the natural dietary compound curcumin was able
to target macrophages and reduce their pro-inflammatory
action [171]. Polyethylene glycol-conjugated polyion com-
plex (PIC) vesicles containing drugs were injected into
carotid arteries of rats using a balloon catheter, resulting in
sustained targeted delivery, providing a proof-of-concept
that this approach can be used for treating atherosclerosis
in the future [172].

Conclusions
There is no single ideal animal model for studying a
particular clinical condition [173–175]. The general
criteria for an appropriate animal model lies are the size,
docility, ease of breeding and housing, known genetic
profile, analogies with humans and the costs involved.
Mice are amenable to genetic modification, allowing
identification of genes contributing to the development
of atherosclerosis. The understanding on the risk factors
and natural history of atherosclerosis offer insights on
disease prevention. Identification of the molecular events
is important for developing therapeutic strategies to

improve endothelial dysfunction, which could slow or
even reverse disease progression in atherosclerosis [176,
177].
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