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Cardiac and plasma lipid profiles in response to
acute hypoxia in neonatal and young adult rats
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Abstract

Background: The physiological and biochemical responses to acute hypoxia have not been fully characterized in
neonates. Fatty acids and lipids play an important role in most aspects of cardiac function.

Methods: We performed comprehensive lipid profiling analysis to survey the changes that occur in heart tissue
and plasma of neonatal and young adult rats exposed to hypoxia for 2 h, and following 2 h of recovery from
hypoxia.

Results: Cardiac and plasma concentrations of short-chain acylcarnitines, and most plasma long-chain fatty acids,
were decreased in hypoxic neonates. Following recovery from hypoxia, concentrations of propionylcarnitine,
palmitoylcarnitine, stearoylcarnitine were increased in neonatal hearts, while oleylcarnitine and linoleylcarnitine
concentrations were increased in neonatal plasma. The concentrations of long-chain fatty acids and long-chain
acylcarnitines were increased in the hearts and plasma of hypoxic young adult rats; these metabolites returned to
baseline values following recovery from hypoxia.

Conclusion: There are differential effects of acute hypoxia on cardiac and plasma lipid profiles with maturation
from the neonate to the young adult rat. Changes to neonatal cardiac and plasma lipid profiles during hypoxia
likely allowed for greater metabolic and physiologic flexibility and increased chances for survival. Persistent
alterations in the neonatal cardiac lipid profile following recovery from hypoxia may play a role in the
development of rhythm disturbances.

Background
Pulmonary and cardiac dysfunction results in hypoxemia
in neonates that, in turn, may lead to hypothermia and
bradycardia [1-5]. Myocardial lipid composition affects
electrophysiological and mechanical function due to
modulation of the physicochemical properties of cellular
membranes [6-11]. Fatty acids also generate a constant
supply of ATP needed for normal myocardial function
[12]. Perturbations in cardiac fatty acid composition
may lead to defects in ion channel function, decreases
in mitochondrial oxidative capacity, and rhythm distur-
bances [13-16].
The present study evaluated cardiac and plasma lipid,

fatty acid, and acylcarnitine profiles in response to and
after recovery from severe hypoxia in neonatal (PD2)
and young adult (PD60) rats. We identified hypoxia-
induced changes in cardiac and plasma lipid profiles

that may be important in cardiac function, either during
or recovery from hypoxia.

Methods
The Aurora Health Care IACUC approved the animal
protocol. Timed-pregnant Sprague-Dawley rats at gesta-
tional day 15 (N = 6) and male rats at postnatal day
(PD) 50 (175-200 g; N = 12) from Harlan Sprague Daw-
ley (Indianapolis, IN) were maintained on a standard
diet and water ad libitum in a controlled environment
(0600-1800 lights on). The size of litters was normalized
(12 pups/litter; N = 72 pups). PD2 pups were placed in
chambers and allowed to nest and huddle on an ade-
quate amount of bedding. After 30 min of room air (8
L/min), 3-4 pups from each litter were removed from
the chamber, sacrificed, and baseline samples pooled.
Then, the input O2 concentration was decreased to 8%.
After 2 h, 3-4 pups from each litter were removed from
the chamber, sacrificed, and samples pooled; the O2

concentration in each chamber was then returned to
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21%. Remaining pups were sacrificed following a 2 h
recovery period. PD60 rats were similarly exposed to
hypoxia (3 rats per chamber).
Rats were sacrificed by decapitation and trunk blood

was collected into EDTA. Blood samples were centri-
fuged for 10 sec (within 10 sec of collection) in a micro-
fuge at room temperature with plasma frozen
immediately. Plasma samples from PD2 pups were
pooled (4 pups/sample). Whole hearts from PD2 rats
were immediately excised, rinsed in ice-cold saline, and
frozen in liquid nitrogen (3 @ PD2 hearts per sample).
Plasma and hearts from each PD60 rat was treated as
one sample (N = 4 sacrificed per time point).
A comprehensive assessment of heart and plasma lipid

profiles was performed (Lipomics Technologies, Inc., West
Sacramento, CA) as described previously [17]. Intra-assay
CVs were: cholesterol ester (CE; 2.0%), diacylglyercol
(DAG; 5.5%), free fatty acid (FFA; 3.5%), lysophosphatidyl-
choline (LPC; 12.2%), phosphatidylcholine (PC; 5.0%),
phosphatidylethanolamine (PE; 13.0%), phosphatidylserine
(PS; 10.0%) and triacylglycerol (TAG; 0.4%). Samples for
acylcarnitine profiling were prepared for liquid chromato-
graphy-tandem mass spectrometry (LC-MS/MS) analysis
in the presence of dueterated surrogates for quantitation
through a modified liquid preparation and injected onto
an 1100 Series HPLC (Agilent Technologies, CA) con-
nected to a Quattro Premier triple quadrupole mass spec-
trometer (Waters, MA). The analytes were ionized via

positive electrospray and the mass spectrometer was oper-
ated in the tandem MS mode.
Data are expressed as mean ± SEM. Significant differ-

ences were assessed by one-way ANOVA with post hoc
Student-Newman-Keuls analysis for multiple compari-
sons (SigmaStat 2.03). Differences in baseline lipid class
concentrations (PD2 vs. PD60) were assessed by
unpaired Student’s t-test.

Results
Hearts from PD60 rats had higher baseline FFA, PC, and
PE when compared to hearts from PD2 rats (Table 1).
Plasma from PD60 rats had significantly higher CE at
baseline, while DAG, PC, PE, and TAG were lower com-
pared to plasma from PD2 rats.
Table 2 summarizes only those alterations that had

statistically significant cardiac lipid profiles. PD2 cardiac
TAG-20:5n3 was decreased, while PE-14:0, PS-18:2n6,
and PS-20:4n6 were increased by exposure to hypoxia.
Following recovery from hypoxia, PD2 cardiac DAG-
16:0, DAG-18:0, PC-18:2n6, PS-dm16:0, and PC-20:4n6
were increased. Additionally, PS-18:2n6 and PS-20:4n6
remained significantly increased following recovery from
hypoxia when compared to baseline. In the hearts of
PD60 rats, 16:0, 16:1n7, 18:1n9, 18:3n3, and 18:2n6 in
the FFA fraction were increased by exposure to acute
hypoxia. There were no significant changes in the PD60
cardiac lipid profile following recovery from hypoxia.

Table 1 Baseline lipid class concentrations (nmol/g) in the heart and plasma of PD2 and PD60 rats - effects of age.

Lipid Class Source PD2 PD60 P Value

Cholesterol Ester (CE) Heart 337.75 ± 96.09 424.50 ± 102.75 0.560

Plasma 1249.00 ± 41.23 1449.00 ± 48.61* 0.020

Diacylglycerol (DAG) Heart 293.75 ± 30.56 334.00 ± 13.10 0.272

Plasma 65.75 ± 8.84 30.00 ± 7.22* 0.020

Free Fatty Acid (FFA) Heart 1230.00 ± 113.48 2093.50 ± 153.14* 0.004

Plasma 689.25 ± 53.22 653.00 ± 27.42 0.567

Lysophosphatidylcholine
(LPC)

Heart 423.75 ± 35.01 487.00 ± 36.79 0.259

Plasma 394.25 ± 13.92 393.00 ± 34.47 0.974

Phosphatidylcholine (PC) Heart 8091.75 ± 759.67 14169.25 ± 789.30* 0.001

Plasma 1246.25 ± 35.92 1130.50 ± 21.52* 0.033

Phosphatidylethanolamine
(PE)

Heart 6896.00 ± 624.50 12343.00 ± 434.87* <0.001

Plasma 324.00 ± 23.01 181.75 ± 24.55* 0.006

Phosphatidylserine (PS) Heart 1321.33 ± 159.17 1614.75 ± 62.90 0.112

Plasma n/a n/a

Triacylglycerol (TAG) Heart 1038.00 ± 147.45 999.25 ± 360.61 0.924

Plasma 1527.50 ± 108.83 331.50 ± 39.01* <0.001

Free Cholesterol (FC) Heart 3762.25 ± 327.30 3651.00 ± 151.38 0.768

Plasma 632.75 ± 30.51 622.25 ± 22.22 0.790

Data are presented as mean ± SEM. * Significantly different from PD2 rats. N = 4 samples for each experimental group. Note: plasma from 2-3 pups was pooled
to generate one sample. N/A = not applicable.
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Total plasma FFA concentrations, including 16:0,
18:1n9, and 18:2n6, were significantly decreased by
exposure to hypoxia in PD2 rats (Table 3); there were
no changes following recovery. Plasma total FFA (e.g.
16:0, 16:1n7, 18:1n9, and 18:2n6) was increased by expo-
sure to hypoxia in PD60 rats. Plasma TAG-20:4n6 and
LPC-20:4n6 were altered by hypoxia, and these altera-
tions remained following recovery from hypoxia.
Cardiac acylcarnities AC4:0, AC5:0, and AC6:0 were

decreased during hypoxia in PD2 rats (Figure 1). After
recovery, these metabolites returned to baseline, but
AC3:0, AC16:0, and AC18:0 were increased. Interest-
ingly, most AC metabolites were increased by exposure
to hypoxia in PD60 hearts; these changes returned to
baseline values following recovery. Carnitine concentra-
tions were significantly lower in PD2 versus PD60
hearts; however, there was no effect of hypoxia or recov-
ery in either age group.
Plasma AC3:0, AC4:0, AC5:0, and AC6:0 were signifi-

cantly decreased during hypoxia in PD2 rats (Figure 2).

Following recovery, PD2 plasma AC8:0, AC14:0,
AC18:1n9, and AC18:n6 were significantly increased.
AC4:0, AC14:0, AC16:0, AC18:0, AC18:1n9, and
AC18:2n6 were all increased by exposure to hypoxia in
PD60 rats. Plasma carnitine concentrations were signifi-
cantly higher in PD2 rats when compared to PD60 rats
(P = 0.017), but hypoxia had no effect at both ages.

Discussion
This comprehensive survey generated a large data set,
yet a limited number of statistically significant changes
were identified, demonstrating the specificity of the ana-
lysis. We will focus only on a subset of these changes
and propose importance for their effects on cardiac
function during or after exposure to hypoxia.
Hearts from PD2 rats exhibited resistance to hypoxia-

induced changes in the lipid profile. Hypoxia caused a
significant decrease in short-chain AC in the PD2 heart.
This may have been due to increased mitochondrial b-
oxidation under hypoxic conditions, as decreases in AC
suggest their disappearance into mitochondria for subse-
quent metabolism. Conversely, PD2 hearts may have
reverted to the oxidation of glucose (i.e. the fetal pheno-
type) under hypoxic conditions [18].
Following recovery from hypoxia, hearts from PD2

rats showed increases in 18:2n6, 20:4n6, and dm16:0 in
the PS fraction. An increase in cardiac PS-associated n6
fatty acids and plasmalogen (i.e. dm16:0) may have
altered the fluidity of cellular membranes, affecting

Table 2 Cardiac lipid profiling in PD2 and PD60 rats -
effects of hypoxia and recovery.

Lipid Class -
Fatty Acid

Baseline 2 h of Hypoxia 2 h Recovery
From Hypoxia

PD2 Heart

PE - 14:0 18.12 ± 1.94 33.72 ± 3.22b 25.15 ± 3.88

TAG - 20:5n3 23.40 ± 2.23 13.97 ± 1.50a 18.22 ± 2.15

DAG - 16:0 162.65 ± 14.40 181.48 ± 10.22 215.03 ± 13.13a

DAG - 18:0 73.10 ± 5.66 79.82 ± 4.74 94.55 ± 2.95a

PC - 18:2n6 910.23 ± 51.81 1016.28 ± 43.05 1137.85 ± 37.57b

PC - 20:4n6 3357.63 ± 241.70 3829.30 ± 187.24 4163.98 ± 91.42a

PE - 22:5n3 348.03 ± 31.18 376.00 ± 13.45 445.35 ± 21.60a

PS - 18:2n6 73.93 ± 3.22 84.22 ± 3.55a 88.72 ± 1.69b

PS - 20:4n6 249.07 ± 29.52 317.28 ± 15.47a 368.38 ± 5.09d

PS - dm16:0 29.67 ± 3.93 41.53 ± 3.45 45.65 ± 3.74a

PD60 Heart

FFA - 16:0 503.55 ± 32.46 715.00 ± 70.41a 539.00 ± 18.51

FFA - 16:1n7 12.15 ± 0.55 44.85 ± 7.77d 15.00 ± 1.07

FFA - 18:1n9 200.07 ± 15.70 420.65 ± 49.30d 281.20 ± 11.50

FFA - 18:3n3 15.47 ± 1.26 37.97 ± 3.96e 18.77 ± 1.39

FFA - 18:2n6 438.52 ± 39.99 710.65 ± 90.36a 546.32 ± 32.84

FFA (total) 2093.50 ± 153.14 3000.00 ±
303.04a

2375.00 ± 88.179

TAG - 20:4n6 148.50 ± 21.07 324.10 ± 51.47a 182.02 ± 43.99

TAG - 18:1n9 517.25 ± 241.95 2694.30 ±
902.49a

500.62 ± 96.65

TAG (total) 999.25 ± 360.61 3986.00 ±
1295.06a

962.25 ± 163.08

Animals were exposed to hypoxia (8% O2) for 2 h or exposed to hypoxia for 2
h and allowed to recover in room air (21% O2) for an additional 2 h. Due to
the size of the data set produced by the lipid profiling analyses, only
significant changes (p < 0.05) are shown. Data are presented as mean ± SEM
(nmol/g tissue). All comparisons were made versus Baseline as follows: a P <
0.05, b P < 0.02, c P < 0.01, d P < 0.005, and e P < 0.001. Lipid class
abbreviations can be found in the legend of Table 1.

Table 3 Plasma lipid profiling in PD2 and PD60 rats -
effects of hypoxia and recovery.

Lipid Class -
Fatty Acid

Baseline 2 h of Hypoxia 2 h Recovery
From Hypoxia

PD2 Plasma

FFA - 16:0 173.62 ± 15.61 90.62 ± 5.42e 146.32 ± 7.90

FFA - 18:1n9 80.02 ± 10.08 37.60 ± 2.89d 66.52 ± 3.73

FFA - 18:2n6 104.57 ± 6.31 47.90 ± 5.80e 91.22 ± 3.16

FFA (total) 689.25 ± 53.22 344.50 ± 26.29e 614.75 ± 27.21

PD60 Plasma

FFA - 16:0 192.52 ± 10.04 350.65 ± 12.19e 160.42 ± 14.72

FFA - 16:1n7 19.45 ± 1.24 50.07 ± 2.90e 17.00 ± 2.24

FFA - 18:1n9 101.42 ± 5.50 211.85 ± 3.29e 82.70 ± 8.92

FFA - 18:2n6 167.85 ± 3.99 363.10 ± 11.27e 134.65 ± 18.16

FFA (total) 653.00 ± 27.42 1249.00 ± 46.82e 538.00 ± 53.79

TAG - 20:4n6 76.10 ± 8.94 177.45 ± 24.25d 128.22 ± 9.35a

LPC - 20:4n6 54.57 ± 5.55 36.55 ± 5.81a 34.35 ± 1.46a

Animals were exposed to hypoxia (8% O2) for 2 h or exposed to hypoxia for 2
h and allowed to recover in room air (21% O2) for an additional 2 h. Due to
the size of the data set produced by the lipid profiling analyses, only
significant changes (p < 0.05) are shown. Data are presented as mean ± SEM
(nmol/g plasma). All comparisons were made versus Baseline as follows: a P <
0.05, b P < 0.02, c P < 0.01, d P < 0.005, and e P < 0.001. N = 4 samples for
each experimental group. Note: plasma from 2-3 PD2 rats was pooled to
generate one sample. Lipid class abbreviations can be found in the legend of
Table 1.
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membrane-associated signal transduction and intracellu-
lar Ca2+ dynamics [19,20]. AC16:0 and AC18:0 were
also increased in PD2 hearts following recovery from
hypoxia. These long-chain AC’s promote arrhythmogen-
esis via disruption of ion transport in sarcolemmal
membranes and also induce mitochondrial and cellular
uncoupling [21,22], suggesting that the PD2 heart may
be at risk for rhythm disturbances following recovery
from acute hypoxia.
As opposed to the PD2 heart, the lipid and fatty acid

profile of the PD60 heart exhibited many changes in
response to acute hypoxia. The FFAs 16:0, 16:1n7,

18:1n9, 18:3n3, and 18:2n6, and all long-chain AC meta-
bolites measured, were increased by hypoxia. Accumula-
tion of long-chain FFA and their AC counterparts have
been shown to be detrimental to cardiac function
[22-24]. Remarkably, following recovery from acute
hypoxia, the lipid and fatty acid profiles of the PD60
heart were not different from baseline values.
All major plasma FFA were significantly decreased by

exposure to hypoxia in PD2 pups. The disappearance of
plasma FFA may have been due to increased insulin
concentrations, and could prove beneficial in the
response to hypoxia. For example, enhanced FFA
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Figure 1 Effects of exposure to and recovery from acute hypoxia in the PD2 (upper panel) and PD60 (lower panel) rat: cardiac
acylcarnitine profiling. Rats were sacrificed at baseline (black bars), 2 h after the onset of hypoxia (light gray bars), or 2 h after return to
normoxia (dark gray bars). Acylcarnitine molecular species are listed on the x-axis. N = 4 per time point (within each age group). *Significant
difference from baseline by one-way ANOVA (P < 0.05). +Significant difference from baseline and 2 h of hypoxia by one-way ANOVA (P < 0.05).
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utilization for hepatic gluconeogenesis may have been
cardioprotective by providing the glucose needed for
myocardial ATP generation [25]. Following recovery
from hypoxia, the concentrations of AC18:1n9 and
AC18:2n6 were significantly elevated. Unsaturated AC
metabolites may lead to rhythm disturbances in the
heart, as has been shown in myocardial ischemia [26].
Exposure of PD60 rats to hypoxia elicited significant

increases in plasma metabolites from most fatty acid
families in the FFA fraction. Plasma FFA and long-chain
AC accumulation is often found in patients with acute

myocardial infarction, and may negatively affect cardiac
function through a number of inter- and intracellular
mechanisms [15,21,22,24,27]. Plasma TAG-20:4n6 was
increased in PD60 rats exposed to hypoxia and
remained increased following recovery, and may cause
contractile dysfunction and intracellular calcium over-
load [28]. Furthermore, increases in plasma lipid and
fatty acids coincided with similar elevations of the same
lipid metabolites in heart tissue.
The significant changes observed in this robust data

set should serve as a basis for further exploration of the
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acylcarnitine profiling. Rats were sacrificed at baseline (black bars), 2 h after the onset of hypoxia (light gray bars), or 2 h after return to
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effects of acute hypoxia in the developing heart. The
study highlighted changes in lipid metabolism that
could potentially affect cardiac function, either in a posi-
tive or negative manner. These comprehensive analyses
should lead investigators to focus on specific pathways
relevant to the changes in lipid metabolites we have
highlighted.
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