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Heme oxygenase-1 prevents non-alcoholic
steatohepatitis through suppressing hepatocyte
apoptosis in mice
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Abstract

Objective: Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, has been reported to have
potential antioxidant properties. However, the role of HO-1 on hepatocyte apoptosis remains unclear. We aim to
elucidate the effects of HO-1 on oxidative stress related hepatocellular apoptosis in nutritional steatohepatitis in
mice.

Methods: C57BL/6J mice were fed with methionine-choline deficient (MCD) diet for four weeks to induce hepatic
steatohepatitis. HO-1 chemical inducer (hemin), HO-1 chemical inhibitor zinc protoporphyrin IX (ZnPP-IX) and/or
adenovirus carrying HO-1 gene (Ad-HO-1) were administered to mice, respectively. Hepatocyte apoptosis was
evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, the mRNA and protein
expression of apoptosis related genes were assayed by quantitative real-time PCR and Western blot.

Results: Hepatocyte signs of oxidative related apoptotic injury were presented in mice fed with MCD diet for
4 weeks. Induction of HO-1 by hemin or Ad-HO-1 significantly attenuated the severity of liver histology, which was
associated with decreased hepatic lipid peroxidation content, reduced number of apoptotic cells by TUNEL staining,
down-regulated expression of pro-apoptosis related genes including Fas/FasL, Bax, caspase-3 and caspase-9, reduced
expression of cytochrome p4502E1 (CYP2E1), inhibited cytochrome c (Cyt-c) release, and up-regulated expression of
anti-apoptosis gene Bcl-2. Whereas, inhibition of HO-1 by ZnPP-IX caused oxidative stress related hepatic injury,
which concomitant with increased number of TUNEL positive cells and up-regulated expression of pro-apoptosis
related genes.

Conclusions: The present study provided evidences for the protective role of HO-1 in preventing nutritional
steatohepatitis through suppressing hepatocyte apoptosis in mice.

Introduction
Non-alcoholic steatohepatitis (NASH) is a chronic pro-
gressive liver disease which comprises steatosis, balloon
degeneration, inflammation, and fibrosis in varying
degrees [1]. The estimated prevalence of NASH is 3%-5%
in general population [2]. Once NASH occurs, about 30%
~ 50% of individuals demonstrate advanced fibrosis or
cirrhosis within a decade [3]. Up to now, the pathogen-
esis of NASH leading to disease progression remains
poorly understood. The most widely accepted explana-
tion is the two hit hypotheses [4], in which hepatocellular

apoptotic response associated with oxidative stress is
considered to be the critical “hit” [5-8] in the transition
from benign steatosis to steatohepatitis.
Heme oxygenase-1 (HO-1) is a stress-responsive pro-

tein induced by various oxidative agents, and plays a fun-
damental role against the oxidative process [9]. It cleaves
pro-oxidant heme into equimolar amounts of carbon
monoxide (CO), biliverdin/bilirubin (BV/BR), and free
iron [10]. These enzymatic reaction products have signifi-
cant and useful biological properties, such as anti-
oxidant, anti-inflammatory and anti-apoptotic activities
[11-14]. A lack of HO-1 in either transgenic mice or in
humans significantly increases apoptotic cell death
[15,16]. Although a role of HO-1 as an antioxidant has
been reported in many studies, the therapeutic potential
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of HO-1 in steatohepatitis through mediating apoptosis is
still unknown. In this study, we examine the effect of
HO-1 on hepatocellular apoptosis in the pathogenesis of
steatohepatitis in mice.

Materials and methods
Animals and treatments
Eight-week-old male C57BL/6J mice were bred and
housed as previously described [17]. Mice were ran-
domly divided into 7 groups (6 mice per group): 1)
MCD group, mice fed methionine-choline deficient diet
(ICN, Aurora, Ohio, USA); 2) control group, mice fed
MCD diet supplemented with choline bitartate (2 g/kg)
and DL-methionine (3 g/kg) (ICN, Aurora, Ohio); 3)
MCD+hemin group, mice fed MCD diet administered
with HO-1 chemical inducer hemin (30 μmol/kg) by
intraperitoneal (i.p.) injections three times per week; 4)
MCD+ZnPP group, mice fed MCD diet administered
with HO-1 inhibitor ZnPP-IX (20 μmol/kg) by i.p. injec-
tions three times per week; 5) MCD+Ad-GFP group,
mice fed control diet administered with adenovirus
encoding green fluorescent protein (2.5 × 108 Plaque-
forming units (pfu) by i.p. injections two times per
week; 6) MCD+Ad-HO-1 group, mice fed MCD diet
administered with, adenovirus encoding the full-length
mouse HO-1 (2.5 × 108 pfu) (Ad-HO-1) by i.p. injec-
tions two times per week; 7) MCD+hemin+Ad-HO-1
group, mice fed MCD diet administered with hemin and
Ad-HO-1. At the end of the experiment for 4 weeks, all
of the animals were sacrificed after overnight fasting.
Livers were weighed and fixed in 10% formalin for his-
tological analysis or snap-frozen in liquid nitrogen fol-
lowed by storage at -80°C freezer until required. All the
protocols and procedures were carried out in accor-
dance with the guidelines of the Hebei Committee for
Care and Use of Laboratory Animals and were approved
by the Animal Experimentation Ethics Committee of the
Hebei Medical University.

Construction of recombinant adenovirus
A recombinant adenovirus containing the entire coding
sequence of mouse HO-1 (Ad-HO-1) and control ade-
novirus encoding green fluorescent protein (Ad-GFP)
were purchased from Tianjin Saier Biochemistry com-
pany limited (Tianjin, China). Adenovirus was propa-
gated, isolated in human embryonic kidney 293 (HEK
293) cells and purified with Adeno-X Virus Purification
kit (Clontech, Mountain View, CA, USA). Titer of the
viral solution was determined by Adeno-X Rapid Titer
kit (Clontech). The virus was stored at -80°C until use.
Mice were given intraperitoneal injection of Ad-HO-1
or Ad-GFP at an amount of 2.5 × 108 PFU suspended in
100 μl phosphate-buffered saline two times per week.

TUNEL assay
4 μm liver sections were deparaffinized in xylene and
hydrated in graded ethanol, and terminal deoxynucleoti-
dyl transferase dUTP nick-end labeling (TUNEL) assay
was performed following manufacturer’s instructions
and the apoptotic cells were identified using a Cell
Death Detection kit (Roche Molecular Biochemicals,
Mannheim, Germany). Ten random fields from 3 slides
per group were examined, and the TUNEL-positive
brown nuclei within the hepatocytes were counted as
previously described [18]. The data were expressed as
the number of TUNEL-positive cells/high- power field
(×400).

Determination of thiobarbituric acid-reactant contents of
the livers
Liver lipoperoxide levels in tissue-homogenate superna-
tants were estimated using the thiobarbituric acid-
reactive substrances (TBARS) assay (Cell Biolabs, Inc.
San Diego, CA) [19].

Immunohistochemistry for HO-1
Immunostaining for HO-1 was performed in paraffin-
embedded liver sections using the specific antibody
(Santa Cruz Biotechnology, Santa Cruz, CA) and an avi-
din-biotin complex (ABC) immunoperoxidase method.
Briefly, endogenous peroxidase activity was blocked by
treating sections with 3% hydrogen peroxide. The pri-
mary polyclonal rabbit antibody anti-HO-1 (dilution
1:100) was applied and incubated overnight at 4°C. After
extensive rinsing, the biotin-conjugated secondary anti-
body, ABC complex/horseradish peroxidase were
applied for 30 minutes at room temperature. Peroxidase
activity was visualized by applying diaminobenzidine to
the sections, which were then counterstained with hae-
matoxylin. Quantitative analysis of HO-1-stained liver
sections was performed by morphometric analysis.

Quantitation of hepatic messenger RNA expression levels
Total RNA was extracted from the frozen liver tissues
by using RNA Trizol reagent (Invitrogen, Carlsbad, CA).
Five microgram of total RNA for each sample was
reverse transcribed into complementary DNA (cDNA),
the cDNA was diluted 1/100 and 5 μl were used as a
template per PCR reaction. The quantitative real-time
PCR was performed on an ABI PRISM 7300 PCR Sys-
tem (Applied Biosystems, Foster City, CA) using Syber
Green I GoTaq® qPCR Master Mix (Promega BioS-
ciences. Sunnyvale, CA). Expression levels of the target
genes generated standard curves were normalized
against an endogenous reference gene glyceraldehydes
3-phosphate dehydrogenase (GAPDH). For each sample
and each gene, PCR were carried out in duplicate and
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repeated twice. The specific primer sequences were
listed in Table 1.

Western blotting analysis of hepatic proteins
Total protein was extracted and concentration was mea-
sured by the Bradford method (DC protein assay; Bio-
Rad, Hercules, CA). Equal amounts of protein (100 mg/
well) were loaded onto 10% SDS-PAGE for each sample
and proteins were transferred onto equilibrated polyvi-
nylidene difluoride membranes (Amersham Biosciences,
Buckinghamshire, UK) by electroblotting. Membranes
were incubated overnight at 4°C with primary antibodies
(Santa Cruz Biotechnology, Santa Cruz, CA). After incu-
bation with the secondary antibody, proteins were
detected by enhanced chemiluminescence (ECL, Amer-
sham Corporation). The amount of protein expression
was corrected by the amount of b-actin in the same
sample and the bands were quantified by scanning den-
sitometry using the digital Kodak Gel Logic 200 (Care-
stream Molecular Imaging, USA).

Statistical analysis
All data are expressed as mean ± standard deviation
(SD). Statistical analysis was carried out by one-way ana-
lysis of variance (ANOVA) and the Student-Newman-
Keuls test for evaluating differences between groups
using SPSS 13.0 (v.13.0; SPSS Inc., Chicago, III, USA).
A P-value of less than 0.05 was considered statistically
significant.

Results
Effect of HO-1 on hepatocyte apoptosis
As shown in Figure 1, TUNEL-positive cells appeared
occasionally in the liver sections of control mice, but
were frequently observed in mice fed with the MCD
diet. TUNEL-positive cells were decreased by hemin or
Ad-HO-1 administration. Treatment with hemin plus
Ad-HO-1 did not further reduce the number of apopto-
tic cell. In contrast, TUNEL-positive cells were markedly
increased by receiving ZnPP-IX compared with the
MCD diet alone.

Effect of HO-1 induction on hepatic oxidative stress
Hepatic level of oxidative stress was analyzed by TBARS
assay (Figure 2). Mice fed with MCD diet resulted in a
prominent increase in TBARS level compared with that
of the control mice. A significant reduction of TBARS
contents was noted after hemin treatment for 4 weeks
compared to MCD-treated mice. A similar effect was
observed by Ad-HO-1 gene transfer compared to mice
administered Ad-GFP. The combination of hemin and
Ad-HO-1 failed to show an additive effect on suppres-
sing TBARS levels. However, the level of TBARS were
markedly increased in mice treated with ZnPP-IX than
those fed MCD diet only (Figure 2). Measurement of
hepatic TBARS revealed that HO-1 induction protected
mice from oxidative injury.

Induction of HO-1 by hemin and/or Ad-HO-1
Immunohistochemical staining for HO-1 was barely
detectable in mice fed control diet (Figure 3), HO-1
staining was increased in liver sections of steatohepatitis
mice fed the MCD diet, and appeared to be mainly in
hepatocytes and kupffer cells both in the nuclei and
cytoplasm, whereas in the sections of MCD-fed mice
treated with hemin or Ad-HO-1, strong and dense HO-
1 immunoreactivity was observed, which paralleled the
improvement in histological severity of steatohepatitis.
Co-administration of hemin and Ad-HO-1 had no better
effect on up-regulation of HO-1 expression. Conversely,
in ZnPP-IX treatment mice, hepatic protein expression
of HO-1 was not observed in company with a pro-
nounced liver injury (Figure 3).

Effect of HO-1 on the expression of CYP2E1 and Cyt-c
The mRNA and protein expressions of lipid peroxida-
tion mediator CYP2E1 were induced by MCD diet
(Figure 4A1 and 4A2). The release of Cyt-c resulted
from mitochondrial dysfunction also highly enhanced in
MCD diet mice (Figure 4B1 and 4B2). Treatment with
hemin or Ad-HO-1 prevented CYP2E1 induction and
Cyt-c release. A similar effect was observed in hemin
plus Ad-HO-1 group. Conversely, hepatic mRNA and

Table 1 Primers for real-time quantitative PCR analysis

Gene Product length Primer sequences

CYP2E1 199 bp F 5’-AACAGAGACCACCAGCACA-3’

R 5’-GGAAGGGACGAGGTTGATGA-3’

Fas 504 bp F 5’-TGCGATTCTCCTGGCTGTGA-3’

R 5’-GGTTCTGCGACATTCGGCTT-3’

FasL 345 bp F 5’-GAGTTCACCAACCAAAGCCTT-3’

R 5’-CAACCTCTTCTCCTCCATTAGC-3’

Bcl-2 100 bp F 5’-GGATGACTTCTCTCGTCGCTAC-3’

R 5’-TGACATCTCCCTGTTGACGCT-3’

Bax 239 bp F 5’-GGTTGCCCTCTTCTACTTTGC-3’

R 5’-TCTTCCAGATGGTGAGCGAG-3’

Cyt-C 157 bp F 5’-CGGCTGCTGTGATTGTGAAT-3’

F 5’-TGTCTTGTGTTTCCCGCCTT-3’

caspase-3 439 bp F 5’-ACGCAGCCAACCTCAGAGA-3’

R 5’-ATGAACCACGACCCGTCCT-3’

caspase-9 171 bp F 5’-TCCTCTCTTCATCTCCTGCTTAG-3’

R 5’-ACTACTCTCTGCTCCTTTGCTG-3’

GAPDH 450 bp F 5’-ACCACAGTCCATGCCATCAC-3’

R 5’-TCCACCACCCTGTTGCTG-3’

Abbreviations: CYP2E1, cytochrome p4502E1; Fas, death receptor; FasL, Fas
Ligand; Cyt-C, cytochrome C; GAPDH, glyceraldehyde 3-phosphate
dehydrogenase.
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Figure 1 Effect of HO-1 on hepatocyte apoptosis in mice fed with MCD diet at four weeks. (A) TUNEL staining for hepatocyte apoptosis in
liver sections from mice administrated: control diet; MCD diet; MCD diet treated with hemin, ZnPP-IX, Ad-GFP, Ad-HO-1 and combination of Ad-
HO-1 and hemin, respectively. (original magnification, × 400). (B) Quantitation of mean TUNEL-positive cells/field. are expressed as mean ± SD.
*P < 0.01 compared with control; #P < 0.05, ##P < 0.01, compared with MCD feeding mice; $P < 0.01, compared with MCD+Ad-GFP treated mice.
Slides are representative of 6 animals per group.

Figure 2 Effects of the MCD diet and treatment with hemin and/or Ad-HO-1 or ZnPP-IX on hepatic lipoperoxide content measured as
thiobarbituric acid-reactive substrances (TBARS). Data are expressed as mean ± SD (n = 6 per group). *P < 0.01, **P < 0.001, compared with
control; #P < 0.05, ##P < 0.01, compared with MCD feeding mice; $P < 0.05, $$P < 0.01, compared with MCD+ Ad-GFP treated mice.
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protein expression of CYP2E1 and Cyt-c was further up-
regulated by ZnPP-IX treatment as compared to MCD
group.

Effect of HO-1 induction on the expression of genes
related to apoptosis
To seek the role of HO-1 induction on cell apoptosis in
the pathogenesis of steatohepatitis, we investigated
expression levels of the key apoptosis-related genes. In
MCD feeding mice, mRNA and protein expression of
Fas (Figure 5A), FasL (Figure 5B), caspase-3 (Figure 6A),
caspase-9 (Figure 6B), Bax (Figure 7A) had a marked
elevation and the anti-apoptosis gene Bcl-2 (Figure 7B)
was dramatically decreased. The expression of Fas/FasL,
caspase-3, caspase-9 and Bax were down-regulated and
Bcl-2 was up-regulated by hemin or Ad-HO-1 adminis-
tration. No further effect on regulating apoptosis genes
expression was observed in administration of hemin and
Ad-HO-1. In contrast, the expression of Fas/FasL, cas-
pase-3, caspase-9 and Bax were further up-regulated and

Bcl-2 was further down-regulated by ZnPP-IX compared
with mice fed a MCD diet.

Discussion
Following the MCD diet for 4 weeks, mice rapidly and
consistently developed a steatohepatitis with steatosis,
mixed inflammatory cell infiltration and hepatocellular
necrosis which is in line with our previous report [20]
and histologic similarities to human disease [21]. Accom-
pany with the histological changes, there was a marked
induction of hepatocyte apoptosis compared with the
control mice. Treatment with HO-1 selective inducer
hemin or Ad-HO-1 significantly attenuated the MCD-
induced hepatic apoptotic injury by induction of hepatic
HO-1 protein levels, which was evidenced by reduction
of hepatocyte apoptosis and amelioration of liver histol-
ogy. However, the combination of Ad-HO-1 and hemin
did not show a synergetic effect. In contrast, a pro-
nounced liver injury and lowered HO-1 immunostaining
was presented by giving ZnPP-IX, a specific competitive

Figure 3 Effects of hemin and/or Ad-HO-1 on hepatic HO-1 protein expression in the liver of mice. (A) Immunostaining for HO-1 protein.
(B) Effect of hemin and/or Ad-HO-1 on quantitative protein expression of HO-1. The expression of HO-1 was estimated by average area density
(areas of positive cells/total areas) (original magnification, × 200). Data are expressed as the mean ± SD (n = 6 per group). *P < 0.001, compared
with control; #P < 0.01, compared with MCD feeding mice; $P < 0.01, compared with MCD+ Ad-GFP treated mice.
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Figure 4 Effects of HO-1 on hepatic expression of cytochrome p450 2E1 (CYP2E1) (A) and cytochrome c (Cyt-c) (B). mRNA expression of
CYP2E1 (A1) and Cyt-c mRNA(B1) was examined by real-time quantitative PCR; and protein expression of CYP2E1 (A2) and Cyt-c (B2) were
measured by Western blot. Data are expressed as the mean ± SD (n = 6 per group). *P < 0.001, compared with control mice; #P < 0.05, ##P < 0.01,
###P < 0.001, compared with MCD mice; $P < 0.05, $$P < 0.01, compared with MCD+ Ad-GFP treated mice.

Figure 5 Effects of HO-1 on expression of FAS and FASL in the liver of mice. mRNA expression of Fas (A1) and Fasligand (FasL) (B1) was
examined by real-time PCR; protein expression of Fas (A2) and FasL (B2) were measured by Western blot. Data are expressed as the mean ± SD
(n = 6 per group). *P < 0.001, compared with control mice; #P < 0.05, ##P < 0.01, compared with MCD mice; $P < 0.05, $$P < 0.01, $$$P < 0.01,
compared with MCD+ Ad-GFP treated mice.
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Figure 6 Effects of HO-1 on expression of caspase 3 and casepase 9 in the liver of mice. mRNA expression of casepase 3 (A1) and
casepase 9 (B1) was examined by real-time PCR; protein expression of casepase 3 (A2) and casepase 9 (B2) were measured by Western blot.
Data are expressed as the mean ± SD (n = 6 per group). *P < 0.01, **P < 0.001 compared with control mice; #P < 0.05, ##P < 0.01, ###P < 0.01,
compared with MCD mice; $P < 0.05, $$P < 0.01, $$$P < 0.01, compared with MCD+ Ad-GFP treated mice.

Figure 7 Effects of HO-1 on expression of Bax and Bcl-2 in the liver of mice. mRNA expression of Bax (A1) and Bcl-2 (B1) was examined by
real-time PCR; protein expression of Bax (A2) and Bcl-2 (B2) were measured by Western blot. Data are expressed as the mean ± SD (n = 6 per
group). *P < 0.01, **P < 0.001 compared with control mice; #P < 0.01, ##P < 0.01, compared with MCD mice; $P < 0.05, $$P < 0.01, compared with
MCD+ Ad-GFP treated mice.
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inhibitor of HO-1 [22]. It was reported that human liver
generated comparable amounts of the HO-derived pro-
ducts in both kupffer cells and hepatocytes, and HO-1
induction protected against ischemia/reperfusion injury,
oxidative stress, inflammation, apoptosis, transplant
rejection, and other conditions [12]. Our data show that
HO-1 is up-regulated by hemin or Ad-HO-1, which
might play an important role in protection against hepa-
tic apoptotic injury caused by MCD diet.
In fatty liver, surplus of fatty acids and excessive oxida-

tion lead to production of reactive oxygen species (ROS)
and oxidative stress, which will trigger inflammatory
response and apoptosis [23]. Excessive production of ROS
generated from microsomal, mitochondrial, and other
pro-oxidant pathways may eventually overwhelm antioxi-
dant defenses and generate highly toxic lipid peroxides.
The increased release of lipid peroxidation products bind
to mitochondrial proteins, promote cytochrome c release
[24], and then contribute to cell death. CYP2E1, a micro-
somal fatty acid oxidizing enzyme, is known to be a signifi-
cant source of ROS [25]. Ethanol and dietary, as well as
endogenously produced fatty acids, are inducers of and
substrates for CYP2E1 [26]. It generates high amounts of
hydrogen peroxide in the presence of oxidizable cosub-
strates [27]. Enhanced CYP2E1 induction could oxidize
mitochondrial DNA, proteins and lipids, and trigger hepa-
tic tumor necrosis factor-alpha (TNF-a) formation by acti-
vating nuclear factor-kappaB (NF-�B), thus further
increase mitochondrial ROS formation, and then lead to
the inflammatory recruitment and apoptosis from oxida-
tive stress [23]. In the present study, we found enhanced
oxidative stress in the MCD-diet mice. Lipid peroxidation,
as reflected by hepatic TBARS concentration and the
mRNA and protein expression of CYP2E1 were signifi-
cantly increased in mice fed a MCD diet compared with
control mice. Treatment with hemin or Ad-HO-1 reduced
hepatic TBARS levels and CYP2E1 expression. Consistent
with our findings, Zhu et al. [28] have demonstrated that
HO-1 up-regulation increased resistance to oxidant-
mediated cytotoxicity and reduced basal prooxidant levels.
These results suggest that up-regulation of HO-1 expres-
sion attenuate oxidative stress and inhibit progression of
liver injury, which probably is due to alleviated lipid perox-
idation and CYP2E1 reduction.
It is now recognized that increased hepatocyte apopto-

sis is a prominent feature in steatohepatitis and correlates
strongly with clinical and histologic disease severity
[29,30]. The association between increased oxidative
stress and a high rate of cellular apoptosis has been
reported in hepatocytes [31]. To elucidate the mechan-
isms by which apoptosis occurs in the liver may provide
an insight into the pathogenesis of steatohepatitis and
identify possible treatments. We demonstrated that oxi-
dative stress related hepatocyte apoptosis was enhanced

by feeding mice MCD diet. Treatment with hemin or
Ad-HO-1 resulted in significantly resistance to apoptosis,
evidenced by diminution of the TUNEL-positive cells
and down-regulated mRNA and protein expressions of
key pro-apoptotic factors Fas/FasL, caspase-3, caspase-9,
Bax and Cyt-c, and markedly increased anti-apoptotic
Bcl-2. Overproduction of ROS might induce apoptosis by
inducing FasL to interact with Fas and formed a death-
inducing signal complex (DISC) [32], activated caspase
cascade including caspase-8 and caspase-3 to recruit
hepatocytes to apoptosis [33]. Also ROS might promote
onset of the mitochondrial permeability transition (MPT)
by inducing translocation of Bax from cytosol to mito-
chondria and lead Cyt-c to release [34] to cause the cell
apoptosis by formation of a complex with apoptotic pro-
tease-activating factor-1 and activation of caspase-9 and
its downstream effectors caspases-3, 6 and 7 [35,36].
Thus, a common feature of the death receptor- and mito-
chondrion-dependent apoptosis is the activation of cas-
pase-3 [37]. It was suggested that HO-1 mediated
protection was accompanied by significantly reduced cas-
pase-3 activation [38]. HO-1 regulated mitochondrial
transport carriers and function by activating Bcl-2 and
Bcl-xL, preventing Cyt-c release and activation of cas-
pases [39]. Increased HO-1 expression increased Bad,
inhibited Cyt-c release and increased cell survival [40,41].
Collectively, the protective effect of HO-1 on oxidative
damage-induced apoptosis may be mediated via both the
extrinsic pathway and the intrinsic apoptosis signaling
pathways. HO-1 provides both antioxidant and anti-
apoptotic properties maybe due to its products of BV/BR,
iron and CO. BV/BR has been shown to defense against
reactive oxygen species [38] and BV adjuvant therapy has
been shown to protect rat liver grafts from ischemia/
reperfusion injury through suppressing Cyt-c release
[42]. Iron induces ferritin, which in turn prevents lipid
peroxidation [43]. CO has been exhibited anti-inflamma-
tory and anti-apoptotic properties, which are thought to
be mediated by activation of p38 mitogen-activated pro-
tein kinase (p38 MAPK) signaling pathway [44-46]. It has
also been reported that the anti-apoptotic effect of CO
involves in inhibition of Fas/FasL expression, and other
apoptosis-related factors including caspases (especially
caspase-3), mitochondrial Cyt-c release, and poly adp-
ribose polymerase cleavage [47]. Clearly, further studies
are still necessary to clarify both how and at which level
HO-1 affects the two apoptosis signaling pathways.
In summary, the present study suggest that induction

of HO-1 by pretreatment with hemin or Ad-HO-1 atte-
nuated hepatic apoptosis injury in MCD diet-fed mice,
which maybe regarded to alleviation of lipid peroxidation,
suppression of CYP2E1 expression, down-regulation of
Fas/FasL, caspase-9 and caspase-3 expression, reduction
of Cyt-c release and modification of Bcl-2/Bax ratio. The
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present study provided evidences for the protective role
of HO-1 in preventing nutritional steatohepatitis through
suppressing hepatocyte apoptosis in mice.
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