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Abstract

Background: Lipodystrophies are rare acquired and genetic disorders characterized by the
complete or partial absence of body fat with a line of metabolic disorders. Previous studies
demonstrated that dietary conjugated linoleic acid (CLA) induces hepatic steatosis and
hyperinsulinemia through the drastic reduction of adipocytokine levels due to a paucity of adipose
tissue in mice and the pathogenesis of these metabolic abnormalities in CLA-fed mice is similar to
that in human lipodystrophy. The present study explores the effect of leptin infusion on the
pathogenesis of diet-induced lipodystrophy in mice. C57BL/6N mice were assigned to three groups:
(1) mice were fed a semisynthetic diet supplemented with 6% corn oil and infused PBS
intraperitoneally (normal group), (2) mice were fed a semisynthetic diet supplemented with 4%
corn oil plus 2% CLA and infused PBS intraperitoneally (lipodystrophy-control group), and (3) mice
were fed a semisynthetic diet supplemented with 4% corn oil plus 2% CLA and infused recombinant
murine leptin intraperitoneally (lipodystrophy-leptin group). All mice were fed normal or
lipodystrophy model diets for 4 weeks and were infused intrapeneally 0 or 5 ug of leptin per day
from third week of the feeding period for | week.

Results: The results indicate that leptin infusion can attenuate hepatic steatosis and
hyperinsulinemia through the reduction of hepatic triglyceride synthesis and the improvement of
insulin sensitivity in diet-induced lipodystrophy model mice.

Conclusion: We expect the use of this model for clarifying the pathophysiology of lipodystrophy-
induced metabolic abnormalities and evaluating the efficacy and safety of drug and dietary
treatment.

Background substances called adipocytokines [1]. In obesity, it is well
Recent advances in molecular and cell biology have  known that adipocytes, cells of adipose tissues, are
shown that adipose tissue not only stores excess energy in  increased and enlarged, and they secrete excess amounts
the form of fat, but also secretes physiologically active  of inflammatory adipocytokines, such as tumor necrosis
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factor-alpha [2] and monocyte chemoattractant protein-1
[3]- This induces insulin resistance, hyperinsulinemia,
and fatty liver [4,5]. On the other hand, it is reported that
the deficiency of adipocytes also induces type-2 diabetes
due to a paucity of normally functioning adipocytokines
such as leptin [6] and adiponectin [7,8]. This symptom is
known as lipodystrophy in humans. Lipodystrophies are
rare acquired and genetic disorders characterized by the
complete or partial absence of body fat with a line of met-
abolic disorders [9,10]. Recent reports indicated that the
clinical treatment of HIV-infected patients by using HIV-1
protease inhibitors also induces acquired lipodystrophy
[10].

To understand the pathophysiology of lipodystrophy and
evaluate the efficacy and safety of clinical treatments, sev-
eral transgenic mouse models that mimic the features of
lipodystrophy, such as aP2-SREBP-1c mouse [11-13] and
A-ZIP/F1 mouse [14-16], have been established. Addi-
tionally, it has been reported that feeding of conjugated
linoleic acid (CLA), a group of positional and geometric
isomers of linoleic acid, with a low-fat diet also induces
lipodystrophy, characterized by an increase in hepatic
lipid content concomitant with a decrease in body fat
mass in mice [17,18]. It has been suggested that lipodys-
trophy may occur in mice because they are too sensitive to
the CLA-induced reduction in body fat [19,20]. We previ-
ously reported that short-term feeding of CLA decreased
weights of adipose tissues and hepatic lipid levels without
inducing adverse effects in mice [21]. Tsuboyama-
Kasaoka, Miyazaki, Kasaoka, and Ezaki [22] also reported
that increasing the amount of fat in a CLA-supplemented
diet substantially reduces the lipodystrophy effect. These
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results indicate that dietary CLA induces fatty liver and
hyperinsulinemia through the drastic reduction of adi-
pocytokine levels due to a paucity of adipose tissue, but
not through the direct induction of hepatic lipid synthesis
and insulin resistance (Figure 1). Because the pathogene-
sis of these metabolic abnormalities in CLA-fed mice is
similar to that in human lipodystrophy, we expect the use
of CLA-fed mice as a diet-induced lipodystrophy model.

In the present study, we investigated the effects of leptin
infusion on insulin sensitivity and lipid metabolism in
diet-induced lipodystrophy model mice. Previous studies
demonstrated that leptin treatment attenuated insulin
resistance in genetically diabetic mice (such as ob/ob mice
and MKR mice) [23,24] and in lipodystrophy model
transgenic mice (such as aP2-SREBP-1c mice) [25]. In
addition, Tsuboyama-Kasaoka, Takahashi, Tnemura, Kim,
Tnage, Okuyama, Kasai, Ikemoto, and Ezaki [26] showed
preliminary data indicating that leptin infusion lowers the
levels of serum insulin and attenuates hepatocyte fat dep-
osition in CLA-fed lipodystrophy model mice. To clarify
the precise effect of leptin infusion, we measured hepatic
enzyme activities in relation to lipid metabolism and
tested insulin sensitivities in these model mice.

Results and Discussion

Effect of leptin infusion on growth parameters in diet-
induced lipodystrophy model mice

The experimental design is indicated in Figure 2. Table 1
shows the effect of leptin infusion on growth parameters
in diet-induced lipodystrophy model mice. Although
there was no significant difference in final body weight or
food intake among groups, CLA-containing lipodystro-
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Figure 2

Experimental design. Mice were fed normal diet (normal group) or lipodystrophy model diets (control group and leptin
group) for 4 weeks and were infused intrapeneally 0 or 5 ug of leptin per day for the final week of the 4-week feeding period.

phy model diets significantly increased the liver weight of
mice, as has been reported elsewhere [17-20]. Leptin infu-
sion alleviated, but not significantly, hepatomegaly in
diet-induced lipodystrophy model mice. Weights of waist
subcutaneous and abdominal (perirenal, epididymal, and
omental) white adipose tissue (WAT) were significantly
decreased in lipodystrophy model mice, and there was no
significant effect of leptin infusion on WAT weights in this
model.

Effect of leptin infusion on hepatic triglyceride metabolism
in diet-induced lipodystrophy model mice

Figure 3 shows hepatic triglyceride levels and serum aspar-
tate aminotransferase (AST) levels of C57BL/6N mice at
the end of the experiment. The hepatic triglyceride level in
mice fed the lipodystrophy model diet was 5-fold that in
the mice fed a normal diet, and 1-week infusion of leptin
resulted in a 62% attenuation of triglyceride accumula-
tion in the liver. The activities of AST, one of the hepatic
injury markers, in the serum of lipodystrophy model mice

were markedly increased because of the development of
hepatic steatosis. Leptin infusion to the rats fed lipodys-
trophy model diets, however, resulted in a 41% decrease
of AST levels consistent with the attenuation of hepatic
triglyceride accumulation.

Takahashi, Kushiro, Shinohara, and Ide [27] demon-
strated that CLA increases the activity and mRNA levels of
hepatic lipogenic enzymes; they suggested that enhanced
lipogenesis is a principal mechanism of CLA-induced
hepatic steatosis in mice. In this study, activities of fatty
acid synthase (FAS) and malic enzyme (ME) were
increased in the liver of mice fed the lipodystrophy model
diet, as has been reported previously (Figure 4). Leptin
infusion, however, did not change those lipogenic
enzyme activities in diet-induced lipodystrophy model
mice. We also measured the activities of phosphatidate
phosphohydrolase (PAP), the key enzyme in the regula-
tion of TG de novo synthesis [28] (Figure 4). The lipodys-
trophy model diet increased the activities of the

Table I: Effect of leptin infusion on growth parameters in C57BL/6N mice

Lipodystrophy model

Normal Control Leptin

Final body weight (g) 21.7+05 22.1 £0.3 21302
Food intake (g) 612+ 13 584 +2.1 596+ 1.2
Liver (g/100 g body weight) 4.11+£0.052 6.47 £ 0.77 b 5.65+029b
Whit adipose tissue (g/100 g body weight)

Epididymal 1.87 £0.222 0.290 + 0.029 b 0.228 + 0.030 b

Perirenal 0.836 +0.104 2 0.199 £ 0.018" 0.178 £ 0.018°

Omental 1.13+£0.092 0.652 £ 0.022 0.740 £ 0.029 ®

Subcutaneous 1.95+0.162 0.329 £ 0.014" 0.344 £ 0.017 b
a b Different superscript letters show significant difference at P < 0.05.
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Figure 3

Effect of leptin infusion on hepatic triglyceride levels and serum alanine aminotransferase activities in diet-
induced lipodystrophy model mice. Mice were fed normal or lipodystrophy model diets for 4 weeks and were infused
intrapeneally 0 or 5 g of leptin per day f for the final week of the 4-week feeding period. Values are expressed as mean + SE.
a bDifferent letters show significant differences at P < 0.05. AST, alanine aminotransferase.

membrane-bound forms of Mg2+-dependent PAP, but  was attenuated by leptin infusion partly through the sup-
these activities were significantly suppressed by the leptin ~ pression of triglyceride synthesis.

treatment in C57BL/6N mice. Therefore we supposed that

hepatic steatosis induced by the lipodystrophy model diet
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Figure 4

Effect of leptin infusion on activities of enzymes related to lipid metabolism in the liver of diet-induced lipodys-
trophy model mice. Mice were fed normal or lipodystrophy model diets for 4 weeks and were infused intrapeneally 0 or 5
ug of leptin per day for the final week of the 4-week feeding period. Values are expressed as mean * SE. 2 bDifferent letters
show significant differences at P < 0.05. FAS, fatty acid synthase; ME, malic enzyme; PAP, phosphatidate phosphohydrolase.

Page 4 of 8

(page number not for citation purposes)



Lipids in Health and Disease 2008, 7:8

Effect of leptin infusion on adipocytokine levels and insulin
sensitivities in diet-induced lipodystrophy model mice

As shown in Figure 5, serum levels of adiponectin and lep-
tin were drastically decreased in mice fed the CLA-con-
taining lipodystrophy model diet, as previously reported
[17-20]. Adiponectin and leptin are both abundantly
secreted from adipose tissue and have several physiologi-
cal functions, including the regulation of insulin sensitiv-
ity in humans and animals. Therefore it has been reported
that the deficiency of adipocytokine secretion induced by
a paucity of adipose tissue would be a cause of lipodystro-
phy, which is characterized by a severe insulin resistance
and leads to hyperinsulinemia and hepatic steatosis
[19,20]. In the present study, hepatic steatosis and hyper-
insulinemia were alleviated by leptin infusion in mice fed
the lipodystrophy model diet, concomitant with the alle-
viation of leptin deficiency (Figure 5). However, leptin
infusion did not affect adiopnectin levels, compared with
those seen with PBS injection in mice fed the lipodystro-
phy model diet. As shown in Figure 6, the insulin-medi-
ated glucose lowering effect was impaired in mice fed the
lipodystrophy model diet, consistent with serum insulin
levels (Figure 5). However, the insulin resistance induced
by the lipodystrophy model diet was markedly alleviated
by leptin infusion in diet-induced lipodystrophy model
mice (Figure 6). These results suggest that leptin treatment
attenuates hepatic steatosis and hyperinsulinemia
through the alleviation of insulin resistance in the diet-
induced lipodystrophy model, as has been shown in vari-
ous lipodystrophy models [23-25]. Although previous
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reports demonstrated that treatment with rosiglitazone
(an insulin sensitizer) can improves insulin resistance
concomitant with an increase of adiponectin level in CLA-
fed mice [29,30], our results suggest that leptin replace-
ment is sufficient to alleviate hepatic steatosis and hyper-
insulinemia in this diet-induced lipodystrophy model.

Conclusion

The present study explored the effect of leptin infusion on
the pathogenesis of diet-induced lipodystrophy in mice.
The results indicate that leptin infusion can attenuate
hepatic steatosis and hyperinsulinemia through the
reduction of hepatic triglyceride synthesis and the
improvement of insulin sensitivity in diet-induced lipod-
ystrophy model mice. We expect the use of this model for
clarifying the pathophysiology of lipodystrophy-induced
metabolic abnormalities and evaluating the efficacy and
safety of drug and dietary treatment.

Methods

Animals and diets

All aspects of the experiment were conducted according to
the guidelines provided by the Ethical Committee of
Experimental Animal Care at Saga University. C57BL/6N
mice (Kyudo Co., Ltd., Saga, Japan) were housed individ-
ually in metal cages in a temperature-controlled room
(24°C) under a 12-hour light/dark cycle. Mice were
assigned to three groups (3-6 mice each): (1) mice were
fed a semisynthetic diet supplemented with 6% corn oil
and infused PBS (Gibco, Tokyo, Japan) intraperitoneally

Serum adiponectin Serum leptin Serum insulin
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Effect of leptin infusion on serum adipocytokines and insulin levels in diet-induced lipodystrophy model mice.
Mice were fed normal or lipodystrophy model diets for 4 weeks and were infused intrapeneally 0 or 5 ug of leptin per day for
the final week of the 4-week feeding period. Values are expressed as mean + SE. 2 bDifferent letters show significant differences

at P < 0.05.
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Figure 6

Effect of leptin infusion on insulin sensitivities in diet-
induced lipodystrophy model mice. Mice were fed nor-
mal or lipodystrophy model diets for 4 weeks and were
infused intrapeneally 0 or 5 ug of leptin per day for the final
week of the 4-week feeding period. Blood glucose was meas-
ured at the indicated time points. Values are expressed as
mean * SE. Means at a time without a common letter differ
at P < 0.05.

(normal group), (2) mice were fed a semisynthetic diet
supplemented with 4% corn oil plus 2% CLA and infused
PBS intraperitoneally (lipodystrophy-control group), and
(3) mice were fed a semisynthetic diet supplemented with
4% corn oil plus 2% CLA and infused recombinant
murine leptin (5 wg/day, PeproTech EC, London, United
Kingdom) intraperitoneally  (lipodystrophy-leptin
group). The semisynthetic diets were prepared according
to recommendations of the AIN-93G [31] and contained
(in weight %) casein, 20; fat, 6; alpha-cornstarch, 13.2;
vitamin mixture (AIN-93™), 1; mineral mixture (AIN-
93G™), 3.5; L-cystein, 0.3; choline bitartrate, 0.25; cellu-
lose, 5; sucrose, 10; tert-buthyhydroquinone, 0.0014; and
beta-cornstarch, 40.7486. The mice received the diets ad
libitum using Rodent CAFE (KBT Oriental Co. Ltd., Saga,
Japan) for 4 weeks. The mice were killed by exsanguina-
tion of the heart, and serum was separated from the
blood. Liver and WATs (perirenal, epididymal, omental,
and waist subcutaneous) were also excised for analysis.

http://www.lipidworld.com/content/7/1/8

Analysis of hepatic triglyceride and serum parameters
Liver lipids were extracted according to the method of
Folch, Lee, and Sloane-Stanley [32], and the concentra-
tions of triglyceride were measured using the methods of
Fletcher [33]. Serum insulin, adiponectin, and leptin lev-
els were measured using commercial mouse ELISA kits
(Shibayagi Co. Ltd., Gunma, Japan; Otsuka Pharmaceuti-
cal Co. Ltd., Tokyo, Japan; and Morinaga Co. Ltd., Yoko-
hama, Japan, respectively). Activities of AST in serum were
measured using commercial enzyme assay kits (Wako
Pure Chemicals, Tokyo, Japan).

Measurement of hepatic enzyme activities

A piece of liver was homogenized insix volumes of a 0.25-
M sucrose solution that contained 1 mM EDTA in a 10-
mM Tris-HCL buffer (pH 7.4). Fractions of cytosol and
microsomes were obtained as previously described [34].
The protein concentration was determined according to
the method of Lowry, rosebrough, Farr, and Randall [35],
with bovine serum albumin used as the standard. The
enzyme activities of ME (EC 1.1.1.40) [36] and FAS (EC
2.3.1.85) [37] in the liver cytosol fraction and phosphati-
date phosphohydrolase (EC 3.1.3.4) [38] in the liver
microsomal fraction were determined as described.

Insulin tolerance test

At the end of the feeding period, human insulin (Humu-
lin R; Eli Lilly Japan K.K., Kobe, Japan) was injected intra-
peritoneally (0.75 mU/g body weight) to all mice. Blood
glucose was measured on samples obtained from tail tip
before and 30, 60, 90, and 120 min after insulin injection.
Blood glucose concentrations were measured using the
GLUCOCARD™ G meter (Arkray, Kyoto, Japan).

Statistical analysis

All values are expressed as means + SE. Data were analyzed
by one-way ANOVA, and all differences were inspected by
Duncan's new multiple-range test [39]. Differences were
considered to be significant at P < 0.05.

List of abbreviations

AST, aspartate aminotransferase; CLA, conjugated linoleic
acid; FAS, fatty acid synthase; ME, malic enzyme; PAP,
phosphatidate phosphohydrolase; WAT, white adipose
tissue.
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