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Abstract

Background: Chronic kidney disease (CKD) is known to be one of the causes of cardiovascular disease and
end-stage renal disease. Among the several treatable risk factors of CKD, that of dyslipidemia is relatively
controversial. To clarify the association of polymorphisms in genes involved in lipid metabolism with the risk of CKD
in the Japanese population, we used cross-sectional data from the Japan Multi-Institutional Collaborative Cohort
(J-MICC) Study.

Methods: A total of 3,268 men and women, aged 35–69 years, were selected from J-MICC Study participants for
inclusion in this study. Twenty-eight candidate single nucleotide polymorphisms (SNPs) were selected in 17 genes
associated with the risk of lipid metabolism disorders, and genotyping of the subjects was conducted using the
multiplex PCR-based invader assay. The prevalence of CKD was determined for stages 3–5 (defined as estimated
glomerular filtration rate <60 ml/min/1.73 m2).

Results: Logistic regression analysis revealed that SNPs APOA5 T − 1131C (rs662799), APOA5 T1259C (rs2266788),
TOMM40 A/G (rs157580), and CETP TaqIB (rs708272) were significantly associated with CKD risk in those individuals
genotyped, with age- and sex-adjusted odds ratios (ORs) per minor allele (and 95% confidence intervals (CIs)) of
OR 1.22 (95% CI: 1.06–1.39), 1.19 (1.03–1.37), 1.27 (1.12–1.45), and 0.81 (0.71–0.92), respectively. Analysis of the
gene–environment interaction revealed that body mass index (BMI) was a significant effect modifier for APOA5
T − 1131C (rs662799) and a marginally significant effect modifier for APOA5 T/C (rs2266788), with the interaction
between BMI ≥30 and individuals with at least one minor allele of each genotype of OR 10.43 (95% CI: 1.29–84.19)
and 3.36 (0.87–13.01), respectively.

Conclusions: Four polymorphisms in APOA5, TOMM40, and CETP were shown to be significantly associated with
CKD risk, and a significant interaction between the two APOA5 SNPs and BMI on CKD risk was also demonstrated.
This suggests the future possibility of personalized risk estimation for this life-limiting disease.
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Background
Chronic kidney disease (CKD) is emerging as a major
public health and financial burden worldwide, and the
number of affected patients is increasing in East Asian
countries such as Japan, where more than 10 million
people currently have CKD stage ≥3. CKD is also known
to be a cause of cardiovascular disease (CVD) and end-
stage renal disease, so prevention of this potentially life-
limiting disease is becoming a pressing issue [1]. CKD
has a number of treatable risk factors, such as diabetes
mellitus, hypertension, glomerular nephritis, and dyslip-
idemia [2]. Of these, the effect of dyslipidemia on human
CKD risk is relatively controversial, although substantial
evidence from animal models is supportive of this associ-
ation [3,4], suggesting that dyslipidemia plays an import-
ant role in the development and progression of CKD.
Additionally, data from 4,483 healthy men participating in
the Physician’s Health Study showed that elevated total
cholesterol, high non-high-density lipoprotein (HDL) cho-
lesterol, a high ratio of total cholesterol to HDL cholesterol,
and low HDL cholesterol in particular were significantly
associated with an increased risk of developing renal dys-
function with an initial creatinine level <1.5 mg/dl [5].
Some other reports also suggested that blood lipids modify
the decline in renal function as well as hypertension [6,7].
In 2005, we launched the Japan Multi-Institutional

Collaborative Cohort (J-MICC) Study, a large genome
cohort study to confirm and detect gene–environment
interactions in lifestyle-related diseases, particularly can-
cer [8,9]. Considering the potentially important roles of
lipid metabolisms in the etiology of CKD, we hypothesized
that genetic polymorphisms modulating lipid metabolizing
pathways would also affect CKD risk in humans. Accord-
ingly, to clarify the association of polymorphisms in genes
involved in lipid metabolism with CKD risk, we examined
this in Japanese subjects using the cross-sectional data of
the J-MICC Study.

Results
Subject characteristics and allele frequencies of genes
involved in lipid metabolism
Subject characteristics are summarized by CKD status in
Table 1. The mean age ± standard deviation was 56.6 ±
8.6 years, and 48.6% of all subjects were men. Subjects
with CKD accounted for 17.3% (564/3,268) of the entire
study population. Estimated glomerular filtration rate
(eGFR), age, systolic blood pressure, total cholesterol,
uric acid, use of anti-hypertensive or lipid-lowering
drugs, history of CVD or cerebrovascular disease, and
current smokers were all significantly different between
subjects with and without CKD.
The genotype frequencies included in the analyses

were in accordance with Hardy–Weinberg equilibrium
(HWE), except for the following: apolipoprotein A5 gene
(APOA5) G553T (Cys185Gly, rs2075291) (T allele = 0.066,
χ2 = 4.791, P = 0.029), apolipoprotein E gene (APOE)
T471C (Cys112Arg, rs429358) (C allele = 0.099, χ2 =
6.833, P = 0.009), APOE T − 219G (rs405509) (G allele =
0.307, χ2 = 8.666, P = 0.003), and the translocase of outer
mitochondrial membrane 40 homolog gene (TOMM40)
A/G (rs157580) (G allele = 0.473, χ2 = 6.626, P = 0.010).
The genotype call rate was more than 99.6% for all indi-
viduals with serum creatinine (SCr) data (n = 3,326).

Polymorphisms involved in lipid metabolism and risk
of CKD
The potential confounders tested did not fulfill the sig-
nificance criteria of change in estimate (CIE) >0.1 (10%),
so we adopted the odds ratios (ORs) adjusted only for age
and sex. Logistic regression analysis revealed that APOA5
T − 1131C (rs662799), APOA5 T1259C (rs2266788),
TOMM40 A/G (rs157580), and cholesterol ester transfer
protein gene (CETP) TaqIB (rs708272) were significantly
associated with the risk of CKD, with age- and sex-
adjusted ORs (aORs) and 95% confidence intervals (95%
CIs) of aOR 1.22 (95% CI: 1.06–1.39), 1.19 (1.03–1.37),
1.27 (1.12–1.45), and 0.81 (0.71–0.92), respectively (Table 2).
Because the two APOA5 SNPs (rs662799 and rs2266788)
are reported to be closely linked, we also conducted
haplotype analysis for these loci. This confirmed that the
two SNPs were tightly linked, with linkage disequilibrium
(LD) coefficients D’ = 0.99, r2 = 0.72, while the C-C ha-
plotype was found to be significantly associated with an
increased risk of CKD (aOR 1.18 (95% CI: 1.02–1.36))
(Additional file 1: Table S1). We also conducted the ana-
lysis of serum lipid levels according to these genotypes
found to be significant, as it may provide important infor-
mation about the possible underlying mechanisms for the
associations found (Additional file 2: Table S2).
To detect the lifestyle factors involved in gene–envir-

onment interactions with the genes significantly associ-
ated with CKD risk, we evaluated the interaction term
for effect measure modification using the Breslow–Day
(B–D) test of homogeneity with α = 0.05. Body mass
index (BMI) was extracted as the only covariate that
significantly contributed to the outcome prediction.
Gene–environment interactions were then assessed by
the logistic model incorporating a multiplicative inter-
action term, which revealed that BMI was a significant
effect modifier for APOA5 T − 1131C (rs662799) and a
marginally significant effect modifier of APOA5 T1259C
(rs2266788). The interaction between high BMI (≥30) and
individuals with at least one minor allele of each SNP was
OR 10.43 (95% CI: 1.29–84.19) and 3.36 (0.87–13.01),
respectively. Stratified analyses of the CKD risk for the
APOA5 T − 1131C (rs662799) SNP by BMI resulted in a
strikingly higher OR for individuals with at least one C
allele of APOA5 T − 1131C (rs662799) when only those



Table 1 Comparison of characteristics between subjects with and without CKD (n = 3,268)

CKD (+) CKD (-) P

(n = 564) (n = 2,704)

CKD stage 3 (eGFR < 60 ml/min/1.73m2) 561 (99.5%) -

-Stage 4 (eGFR < 30) 0 (0%) -

Stage 5 (eGFR < 15) 3 (0.5%) -

eGFR (ml/min/1.73m2) 53.7 ± 6.0 78.3 ± 12.5 < 0.001

Age (years) 60.4 ± 7.2 55.9 ± 8.7 < 0.001

Male 260 (46.1%) 1,327 (49.1%) 0.198

Body mass index 23.5 ± 3.1 23.4 ± 3.3 0.413

Systolic blood pressure (mm Hg) 130.1 ± 19.8 128.1 ± 19.4 0.029

Diastolic blood pressure (mm Hg) 78.8 ± 12.4 78.6 ± 11.9 0.746

Use of anti-hypertensive drugs 149 (26.4%) 486 (18.0%) < 0.001

Fasting plasma glucose (mg/dL) 98.8 ± 22.1 100.0 ± 20.8 0.291

HbA1c (%) 5.22 ± 0.70 5.22 ± 0.66 0.942

Use of glucose-lowering drugs 31 (5.5%) 110 (4.1%) 0.129

Total cholesterol (mg/dL) 218.2 ± 34.0 211.1 ± 33.9 < 0.001

HDL cholesterol (mg/dL) 62.0 ± 15.9 63.3 ± 16.3 0.071

Triglyceride (mg/dL)* 106 (76.5-151) 104 (74-154) 0.992

Use of lipid-lowering drugs 70 (12.4%) 225 (8.3%) 0.002

Uric acid (mg/dL) 5.53 ± 1.47 5.10 ± 1.33 < 0.001

History of cardiovascular diseases 34 (6.0%) 80 (3.0%) <0.001

History of cerebrovascular diseases 29 (5.1%) 52 (1.9%) < 0.001

Current smokers 69 (12.2%) 484 (17.9%) 0.001

Current drinkers 295 (52.3%) 1,510 (55.8%) 0.138

Values are expressed as means ± standard deviation, n (%), or median (interquartile range). CKD: chronic kidney disease. CKD was defined as estimated glomerular
filtration rate <60 ml/min/1.73 m2.
*Non-fasting.
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individuals with BMI ≥30 were included (OR 12.39 (95%
CI: 1.55–99.09); Table 3). Additionally, we conducted an
exhaustive investigation of the gene–environment in-
teractions for all SNPs tested, which revealed several
statistically significant interactions in addition to the
one described above (Additional file 3: Table S3).

Discussion
The present study examined the associations between
polymorphisms in genes involved in lipid metabolism
and the risk of CKD in the Japanese population, and
identified a total of four SNPs (two in APOA5 (T − 1131C
[rs662799] and T1259C [rs2266788]), TOMM40 A/G
(rs157580), and CETP TaqIB (G >A) (rs708272)) that were
significantly associated with CKD risk. While the func-
tional implications of some of these polymorphisms are
well-known, others have not yet been sufficiently clarified.
The APOA5 SNP T − 1131C (rs662799) is located in

the APOA5 promoter region and is thought to modulate
gene expression, with minor allele carriers found to have
high triglyceride levels. It is also reported to be in strong
LD with the APOA5 SNP rs2266788 [10,11]. There exist
a considerable number of reports supporting these
effects of APOA5 SNPs on blood triglyceride levels
[10,12,13], and given the potentially important roles
of blood triglyceride concentrations in the development of
human CKD [13,14], the modulation of blood triglyceride
levels due to these APOA5 SNPs may contribute to the
genesis of CKD in humans. The result of our haplotype
analysis of APOA5 SNPs (rs662799 and rs2266788) sug-
gested the potentially substantial role of rs662779. As this
rs662779 (T-1131C) SNP in APOA5 is located in the
promoter region of the APOA5 gene, it is speculated
to modulate the expression of APOA5, although further
biological investigations will be required to confirm it.
TOMM40 is located within 15 kb of APOE, and this is

reflected by the strong LD of TOMM40 polymorphisms,
including SNP rs157580, with the ε4 allele. TOMM40
polymorphisms are therefore very interesting targets
to study in association with human disorders such as
Alzheimer’s disease [15]. A recent genome-wide associ-
ation study revealed that the TOMM40 SNP rs157580 was
significantly associated with low triglyceride levels [16],
although another study reported a significant association



Table 2 Polymorphisms in lipid metabolizing genes and risk of CKD

Polymorphism Genotype CKD (+) CKD (-) Per allele P

(n = 564) (n = 2,704) aOR (95% CI)*

APOA1 Ala61Thr (G219A) G/G 506 (89.7%) 2,423 (89.6%)

(rs12718465) A/G 56 (9.9%) 268 (9.9%) 0.98 (0.74-1.31) 0.901

A/A 2 (0.4%) 13 (0.5%)

APOA5 G553T (Cys185Gly) G/G 483 (85.6%) 2,375 (87.8%)

(rs2075291) G/T 79 (14.0%) 309 (11.4%) 1.12 (0.87-1.43) 0.378

T/T 2 (0.4%) 20 (0.7%)

APOA5 T-1131C T/T 221 (39.2%) 1,197 (44.3%)

(rs662799) C/T 258 (45.7%) 1,183 (43.8%) 1.22 (1.06-1.39) 0.004

C/C 85 (15.1%) 324 (12.0%)

APOA5 C/A C/C 210 (37.2%) 1,028 (38.0%)

(rs6589567) C/A 264 (46.8%) 1,241 (45.9%) 1.03 (0.90-1.17) 0.684

A/A 90 (16.0%) 435 (16.1%)

APOA5 T1259C T/T 282 (50.0%) 1,437 (53.1%)

(rs2266788) T/C 224 (39.7%) 1,059 (39.2%) 1.19 (1.03-1.37) 0.019

C/C 58 (10.3%) 208 (7.7%)

APOB A/G A/A 308 (54.6%) 1,421 (52.6%)

(rs673548) A/G 210 (37.2%) 1,056 (39.1%) 0.95 (0.82-1.10) 0.490

G/G 46 (8.2%) 227 (8.4%)

APOE Arg158Cys (C609T) C/C 523 (92.7%) 2,472 (91.4%)

(rs7412) C/T 40 (7.1%) 226 (8.4%) 0.82 (0.58-1.15) 0.255

T/T 1 (0.2%) 6 (0.2%)

APOE Cys112Arg (T471C) T/T 469 (83.2%) 2,200 (81.4%)

(rs429358) T/C 88 (15.6%) 466 (17.2%) 0.91 (0.73-1.13) 0.388

C/C 7 (1.2%) 38 (1.4%)

APOE T-219G T/T 290 (51.4%) 1,317 (48.7%)

(rs405509) T/G 228 (40.4%) 1,090 (40.3%) 0.90 (0.78-1.03) 0.124

G/G 46 (8.2%) 297 (11.0%)

APOE cluster A/G A/A 452 (80.1%) 2,155 (79.7%)

(rs4420638) A/G 104 (18.4%) 509 (18.8%) 0.97 (0.79-1.20) 0.798

G/G 8 (1.4%) 40 (1.5%)

TOMM40 A/G A/A 118 (20.9%) 825 (30.5%)

(rs157580) A/G 299 (53.0%) 1,257 (46.5%) 1.27 (1.12-1.45) <0.001

G/G 147 (26.1%) 622 (23.0%)

HMGCR G/A G/G 163 (28.9%) 736 (27.2%)

(rs3846662) G/A 278 (49.3%) 1,326 (49.0%) 0.91 (0.80-1.04) 0.162

A/A 123 (21.8%) 642 (23.7%)

LPL G/A G/G 366 (64.9%) 1,797 (66.5%)

(rs331) G/A 177 (31.4%) 816 (30.2%) 1.04 (0.88-1.22) 0.681

A/A 21 (3.7%) 91 (3.4%)

LPL G1791C (Ser474Stop) G/G 423 (75.0%) 2,083 (77.0%)

(rs328) G/C 131 (23.2%) 579 (21.4%) 1.07 (0.89-1.30) 0.466

C/C 10 (1.8%) 42 (1.6%)
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Table 2 Polymorphisms in lipid metabolizing genes and risk of CKD (Continued)

NR1H3 G/A G/G 301 (53.4%) 1,512 (55.9%)

(rs7120118) G/A 224 (39.7%) 1,027 (38.0%) 1.12 (0.97-1.31) 0.125

A/A 39 (6.9%) 165 (6.1%)

NR1H3 A/G A/A 299 (53.0%) 1,524 (56.4%)

(rs2167079) A/G 227 (40.2%) 1,017 (37.6%) 1.14 (0.99-1.33) 0.078

G/G 38 (6.7%) 163 (6.0%)

MTNR1B A/G A/A 250 (44.3%) 1,245 (46.0%)

(rs1447352) A/G 247 (43.8%) 1,176 (43.5%) 1.06 (0.92-1.22) 0.392

G/G 67 (11.9%) 283 (10.5%)

FADS2 C/T C/C 227 (40.2%) 979 (36.2%)

(rs174570) C/T 250 (44.3%) 1,266 (46.8%) 0.91 (0.80-1.04) 0.167

T/T 87 (15.4%) 459 (17.0%)

KCNJ11 A1577G (Ile337Val) A/A 240 (42.6%) 1,068 (39.5%)

(rs5215) A/G 241 (42.7%) 1,274 (47.1%) 0.95 (0.83-1.09) 0.485

G/G 83 (14.7%) 362 (13.4%)

TMEM57 A/G A/A 256 (45.4%) 1,186 (43.9%)

(rs10903129) A/G 254 (45.0%) 1,234 (45.6%) 0.90 (0.78-1.04) 0.168

G/G 54 (9.6%) 284 (10.5%)

DOCK7 A/C A/A 347 (61.5%) 1,542 (57.0%)

(rs1167998) A/C 188 (33.3%) 996 (36.8%) 0.86 (0.74-1.01) 0.061

C/C 29 (5.1%) 166 (6.1%)

CELSR2 C/T C/C 516 (91.5%) 2,413 (89.2%)

(rs4970834) C/T 46 (8.2%) 280 (10.4%) 0.79 (0.58-1.07) 0.133

T/T 2 (0.4%) 11 (0.4%)

LIPC Val95Met (G340A) G/G 342 (60.6%) 1,616 (59.8%)

(rs6078) G/A 193 (34.2%) 945 (34.9%) 0.96 (0.82-1.13) 0.643

A/A 29 (5.1%) 143 (5.3%)

LIPC T-514C T/T 132 (23.4%) 731 (27.0%)

(rs1800588) T/C 290 (51.4%) 1,353 (50.0%) 1.10 (0.97-1.26) 0.143

C/C 142 (25.2%) 620 (22.9%)

CETP TaqIB (G > A) G/G 234 (41.5%) 934 (34.5%)

(rs708272) G/A 251 (44.5%) 1,315 (48.6%) 0.81 (0.71-0.92) 0.002

A/A 79 (14.0%) 455 (16.8%)

CETP G/T G/G 372 (66.0%) 1,692 (62.6%)

(rs3764261) G/T 170 (30.1%) 872 (32.2%) 0.86 (0.73-1.01) 0.068

T/T 22 (3.9%) 140 (5.2%)

CETP Ile405Val (G > A) G/G 147 (26.1%) 753 (27.8%)

(rs5882) G/A 277 (49.1%) 1,312 (48.5%) 1.06 (0.93-1.20) 0.403

A/A 140 (24.8%) 639 (23.6%)

CETP A-629C A/A 162 (28.7%) 825 (30.5%)

(rs1800775) A/C 279 (49.5%) 1,366 (50.5%) 1.10 (0.96-1.25) 0.174

C/C 123 (21.8%) 513 (19.0%)

*aOR: adjusted odds ratio (adjusted for age and sex); 95% CI: 95% confidence interval; CKD: chronic kidney disease.

Hishida et al. Lipids in Health and Disease 2014, 13:162 Page 5 of 10
http://www.lipidworld.com/content/13/1/162



Table 3 Stratified analyses for the CKD risk associated with APOA5 polymorphisms by BMI levels

Proportion of minor heterozygous plus homozygous
(among subjects with all genotypes)

CKD (+) CKD (-) OR* 95% CI* Pinteraction
#

(n = 564) (n = 2,704)

Genotype BMI N (%) N (%)

APOA5 T-1131C

(rs662799)

≥ 30 15/16 (93.8) 54/95 (56.8) 12.39 1.55-99.09

< 30 328/548 (59.9) 1,453/2,609 (55.7) 1.21 0.999-1.47 0.028

APOA5 T1259C

(rs2266788)

≥ 30 13/16 (81.3) 50/95 (52.6) 3.68 0.97-13.93

< 30 269/548 (49.1) 1,217/2,609 (46.6) 1.14 0.95-1.38 0.079

*aOR: adjusted odds ratio (adjusted for age and sex); 95% CI: 95% confidence interval.
#OR for interaction =10.43 (95% CI: 1.29-84.19) for APOA5 rs662799, and 3.36 (95% CI: 0.87-13.01) for APOA5 rs2266788.
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between the TOMM40 rs157580 minor (G) allele and in-
creased levels of triglycerides in the Chinese population
[17]. Given that population-specific effects appear to exist
between different ethnicities in East Asian countries for
the same polymorphism [18], our present finding may
provide valuable information for future genetic investiga-
tions and help prevent publication bias [19].
The CETP TaqI B polymorphism was previously

shown to be associated with an effect on HDL cholesterol
concentrations [20], as well as subsequent CVD risk [21],
which is thought to result from LD between this SNP and
an as yet unknown functional mutation in the regulatory
region of CETP [22]. The functional roles of this CETP
SNP in the regulation of human blood cholesterol levels
have been well established by a number of previous stud-
ies [23,24]. Taking into considerations the important roles
of blood cholesterol levels in the risk of renal dysfunction,
this CETP SNP is considered to be involved in the CKD
development through the modulation of blood cholesterol
concentrations.
To date, only a few associations between SNPs in lipid

metabolizing genes and CKD risk have been reported,
with recent studies reporting a role for apolipoprotein
L1 variants in the risk and progression of CKD in African
American populations [25,26], and associations of the
apolipoprotein A1 gene (APOA1) and APOA5 with CKD
risk. Associations between the four SNPs and CKD risk
have not previously been reported, so this study provides
novel evidence for the effect of genetic variations in these
genes involved in lipid metabolism and CKD risk. More-
over, a previous significant association observed between
APOE rs405509 and CKD risk was not replicated in the
present study. The associations of some, but not all, of the
SNPs in our study with CKD followed a similar trend to
that previously reported for CVD [27,28], which might
be expected given that CKD is considered to be a form
of CVD. The differences could reflect the existence of
etiologies specific to each vascular disease, and different
gene–environment or gene–gene interactions between
races/ethnicities. Nevertheless, the present research
appears to confirm the previously reported findings of
the possible influence of lipid disorders on the risk of CKD
in humans [3,22].
SNPs shown to be marginally significant in the present

study, liver X receptor-alpha gene (NRIH3) rs2167079,
dedicator of cytokinesis 7 gene (DOCK7) rs1167998, and
CETP rs70827, suggest a possible involvement of these
genes in CKD development. NRIH3 inhibits cholesterol
absorption, while CETP mediates the exchange of lipids
between lipoproteins, resulting in the net transfer of cho-
lesteryl ester from HDL cholesterol to other lipoproteins.
Considering the important roles of these genes in lipid
metabolism and subsequent CKD onset, the involvement
of their functional polymorphisms in CKD risk seems bio-
logically plausible. However, their marginal significance
could have been detected as a result of a type I error,
which necessitates further investigation with sufficiently
larger sample sizes. The remaining SNPs found not to be
associated with CKD risk may not play a major role in
CKD development, thus discouraging us from their fur-
ther investigation.
One of the most marked as well as important findings

of the present study is the significant interaction between
the APOA5 SNP and BMI on CKD risk, considering its
possible future application in the personalized prevention
of CKD. BMI can be regarded as a convenient proxy for
energy intake and consumption, as demonstrated by the
association between dietary fat and obesity [29], which
was represented in a study of the interaction between a
polymorphism in the nitric oxide synthase 3 (NOS3) gene
and BMI on the risk of type 2 diabetes [30] and in other
studies [18]. APOA5 polymorphisms have previously been
reported to be associated with elevated serum triglyceride
levels by several studies [10,12,13], and an interaction
between the APOA5 polymorphism and BMI on high
serum triglyceride levels was reported in the East Asian
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population [18]. Taking these findings into consideration,
we speculate that the synergistic effect of obesity and
dyslipidemia caused by APOA5 polymorphisms may con-
fer the increased risk of CKD.
Our additional exhaustive investigations of the gene-

environment interactions using all polymorphisms tested
revealed several statistically significant associations. Al-
though we didn’t take all these interactions into further
considerations in the present study, these findings may
suggest the way for our future investigations.
The present study has several potential limitations.

Serum lipid levels, such as cholesterol and/or triglyceride,
could be considered as covariates to be adjusted; however,
they can also be regarded as causal intermediates that link
the polymorphisms involved in lipid metabolism and CKD
risk. Therefore, because adjusting for even a partially
causal intermediate phenotype would incorrectly remove
a true association and potentially bias the true association
[31], we chose not to adjust for these variables in this
study. Second, although the genotype frequencies of some
of the SNPs investigated significantly deviated from HWE,
the actual differences in the number of subjects for all
genotypes compared with that expected from the equilib-
rium were small (up to 2.5%), or the deviation was caused
by the relatively small frequency of the minor allele
(<10%). Increasing the sample size may have resulted in
more robust findings, but it was not easy to do this be-
cause of study design constraints. Third, we chose not to
adopt the correction of multiple comparisons by Bonfer-
roni procedures because this study was conducted under
an exploratory context, and because such adjustments can
be regarded as too conservative [32]. Fourth, all CKD
cases were diagnosed from SCr data, which potentially
differ from the actual GFR based on renal measurements,
so could have diluted the effect of each genotype on CKD
risk. Finally, albuminuria was not detected in the present
study. Further investigations with improved study designs
are therefore required.

Conclusions
The present study found that two APOA5 polymorphisms
(T − 1131C [rs662799] and T1259C [rs2266788]), as well
as TOMM40 A/G (rs157580) and CETP TaqIB (G > A)
(rs708272) were significantly associated with CKD risk in
the Japanese population. A significant interaction between
the APOA5 T − 1131C SNP and BMI on CKD risk was
also demonstrated, indicating the future possibility of per-
sonalized risk estimation for this life-limiting disease.

Methods
Study subjects
Subjects were participants of the J-MICC Study, initially
conducted in 10 areas of Japan, in which around 75,000
voluntarily enrolled participants aged 35–69 years provided
blood samples, health check-up data, and lifestyle data
through a questionnaire after providing their written in-
formed consent [8].
In the present analysis, 4,519 randomly selected partici-

pants (about 500 subjects from each of the 10 areas) were
analyzed for whom 108 selected polymorphisms had been
genotyped [9]. Of these individuals, six were excluded
because of ineligibility or withdrawal from the study.
SCr had been measured in 3,326 respondents from
eight of the 10 areas of Japan. Of these, 58 were ex-
cluded because of genotyping failure, and the remaining
3,268 were included in the analyses. Informed consent
was obtained from all subjects and the study protocol
was approved by the Institutional Review Board (IRB)
of Nagoya University Graduate School of Medicine
(IRB approval no. 253-6) and the affiliated Medical
Universities.
Evaluation of lifestyle exposure
Lifestyle exposures were evaluated by a self-administered
questionnaire that was checked by trained staff. The
questionnaire included items on smoking status, alcohol
consumption, and medical history. Smoking status was
classified as current, former, or never, and the level of
exposure was evaluated in pack-years. Former smokers
were defined as people who had quit smoking for at
least 1 year. Alcohol consumption for each type of bev-
erage was determined by average intake frequency and
quantity, then converted into the Japanese sake unit gou
(180 ml), which is equivalent to 23 g of ethanol. The
participants were categorized into non-habitual drinkers,
habitual drinkers who drank less than 1 gou per day,
and those who drank at least 1 gou per day; the latter
two groups were coded as indicator variables. Intakes of
energy and macronutrients were estimated based on re-
sponses to a food frequency questionnaire (FFQ), for
which its reproducibility and validity to estimate nutrient
intakes had been tested and confirmed [33-36]. Correl-
ation coefficients between the FFQ and 3-day food records
were 0.49 for energy, 0.61 for % energy from fat, and 0.86
for % energy from carbohydrate in men. The correspond-
ing figures in women were 0.44, 0.48, and 0.66, respect-
ively [35].
eGFR and definitions of CKD
SCr was measured in all participants using an enzymatic
method. The eGFR of each participant was calculated
based on SCr, age, and sex using the following Japanese
eGFR equation proposed by the Japanese Society of
Nephrology [37]: eGFR (ml/min/1.73 m2) = 194 × SCr
(mg/dl)–1.094 × age–0.287 (×0.739 if female). The prevalence
of CKD was determined for CKD stages 3–5 (defined as
eGFR <60 ml/min/1.73 m2).
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Selection of SNPs
We selected 28 candidate SNPs in 17 genes based on the
notion that they are well characterized and reported to
be associated with the risk of lipid metabolism disorders
using public databases such as PubMed and Online
Mendelian Inheritance in Man. The selected SNPs
were as follows: APOA1 Ala61Thr (G219A) (rs12718465),
APOA5 G553T (Cys185Gly) (rs2075291), APOA5 T −
1131C (rs662799), APOA5 C/A (rs6589567), APOA5
T1259C (rs2266788), apolipoprotein B gene (APOB) A/G
(rs673548), APOE Arg158Cys (C609T) (rs7412), APOE
Cys112Arg (T471C) (rs429358), APOE T− 219G (rs405509),
APOE cluster A/G (rs4420638), TOMM40 A/G (rs157580),
3-hydroxy-3-methylglutaryl-CoA reductase gene (HMGCR)
G/A (rs3846662), lipoprotein lipase gene (LPL) G/A
(rs331), LPL G1791C (Ser474Stop) (rs328), NR1H3
G/A (rs7120118), NR1H3 A/G (rs2167079), melatonin
receptor 1B gene (MTNR1B) A/G (rs1447352), fatty acid
desaturase 2 gene (FADS2) C/T (rs174570), potassium
channel, subfamily J, member 11 gene (KCNJ11) A1577G
(Ile337Val) (rs5215), macoilin gene (TMEM57) A/G
(rs10903129), DOCK7 A/C (rs1167998), cadherin gene
(CELSR2) C/T (rs4970834), hepatic lipase gene (LIPC)
Val95Met (G340A) (rs6078), LIPC T − 514C (rs1800588),
CETP TaqIB (G > A) (rs708272), CETP G/T (rs3764261),
CETP Ile405Val (G > A) (rs5882), and CETP A − 629C
(rs1800775).
Genotyping
DNA was extracted from buffy coat using a BioRobot®
M48 Workstation (QIAGEN, Tokyo, Japan), or from
whole blood samples using an automatic nucleic acid
isolation system (NA-3000, Kurabo Industries Ltd., Osaka,
Japan). Genotyping was performed by the RIKEN institute
(Wako, Japan) using the multiplex PCR-based invader
assay (Third Wave Technologies, Madison, WI) as de-
scribed previously [38].
Statistical analysis
Differences in the distribution of each characteristic
variable between individuals with and without CKD were
examined by the Student’s t-test or χ2 test. Accordance
with HWE, indicating an absence of discrepancy be-
tween genotype and allele frequencies, was determined
using the χ2 test. Logistic regression analysis was per-
formed to estimate age- and sex-adjusted ORs and 95%
CIs for CKD by genotype. All other potential confound-
ing variables, including BMI, systolic blood pressure,
diastolic blood pressure, fasting plasma glucose, glycated
hemoglobin, total cholesterol, HDL cholesterol, triglycer-
ides, uric acid, past history of cardiovascular or cerebrovas-
cular diseases, use of anti-hypertensive, glucose-lowering,
or lipid-lowering drugs, smoking status, and drinking habit
were tested [39] to determine if they produced significant
CIEs, as described previously [40,41].
We next evaluated the interaction term for effect

measure modification using the B–D test of homogeneity
with α = 0.05 [42]. Using the variables extracted by
the process above, gene–environment interactions were
assessed by the logistic model, which included a multipli-
cative interaction term as well as variables for genotypes,
environment factors, age, and sex. Age adjustments in the
analyses were performed with ages regarded as continuous
variables. Analyses by genotype based on per allele model
were carried out with genotypes for each polymorphism
coded as ordinal–categorical variables according to the
number of minor alleles. Differences of serum lipid levels
by genotype were analyzed with Kruskal-Wallis test. All
P values were two-sided, and all calculations were
performed using Stata® version 10 software (StataCorp,
College Station, TX).
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