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Abstract

Background: To develop effective strategies in cancer chemoprevention, an increased understanding of
endogenous biochemical mediators that block metastatic processes is critically needed. Dietary lipids and non-
steroidal anti-inflammatory drugs (NSAIDs) have a published track record of providing protection against
gastrointestinal malignancies. In this regard, we examined the effects of membrane plasmalogens and ibuprofen
on regulation of cellular levels of diamines, polyamine mediators that are augmented in cancer cells. For these
studies we utilized Chinese hamster ovary (CHO) cells and NRel-4 cells, a CHO cell line with defective plasmalogen
synthesis.

Results: NRel-4 cells, which possess cellular plasmalogen levels that are 10% of control CHO cells, demonstrated 2-
to 3-fold increases in cellular diamine levels. These diamine levels were normalized by plasmalogen replacement
and significantly reduced by ibuprofen. In both cases the mechanism of action appears to mainly involve increased
diamine efflux via the diamine exporter. The actions of ibuprofen were not stereospecific, supporting previous
studies that cyclooxygenase (COX) inhibition is unlikely to be involved in the ability of NSAIDs to reduce
intracellular diamine levels.

Conclusions: Our data demonstrate that ibuprofen, a drug known to reduce the risk of colorectal cancer, reduces
cellular diamine levels via augmentation of diamine efflux. Similarly, augmentation of membrane plasmalogens can
increase diamine export from control and plasmalogen-deficient cells. These data support the concept that
membrane transporter function may be a therapeutic point of intervention for dietary and pharmacological
approaches to cancer chemoprevention.
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Background
While the focus of cancer research has largely involved
the design of cytotoxic molecules, increasing efforts are
being made to understand and utilize endogenous antic-
ancer mechanisms. Areas of focus include dietary sup-
plementation, identification of endogenous anticancer
metabolites [1,2] and deregulation of polyamine catabo-
lism [3,4]. Chemoprevention against colorectal [5-9] and
prostate [10,11] neoplasia has been demonstrated with

aspirin and some NSAIDs, like ibuprofen and sulindac,
as well as with difluoromethylornithine (DFMO), an
ornithine decarboxylase (ODC) inhibitor that decreases
polyamine biosynthesis.
While aspirin and NSAIDs act to decrease local

inflammation via cyclooxygenase (COX) inhibition, they
also produce large decreases in the levels of the polya-
mines spermidine, putrescine and cadaverine, actions
that are independent of COX inhibition [12]. Homeo-
static regulation of intracellular polyamine and diamine
levels is essential for normal cell growth and restriction
of hyperplasia and neoplasia. Regulation of diamine
levels is achieved by multiple points of physiological
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regulation. These include: i) the rate limiting enzyme
ODC that converts ornithine to putrescine [13,14]; ii)
polyamine metabolism by polyamine oxidase, spermine
oxidase and spermine/spermidine acetyltransferase
[15,16]; iii) polyamine uptake [17]; and iv) diamine
export [17,18].
Complex changes in plasmalogens and fatty acid pre-

cursors of plasmalogens have been reported for cancer
cells and the plasma of cancer patients [19]. Dietary
omega-3 fatty acids, which are utilized in plasmalogen
synthesis, are also known to decrease the risk of several
cancers [20,21]. Decrements in plasmalogen levels,
alterations in deacylation-reacylation of plasmalogens,
and potential alterations in transport of plasmalogens,
resulting from increases in scramblase 1, have all been
reported to potentially contribute to neoplasia [22,23].
In this regard, we have studied plasmalogen deficiency
in NRel-4 cells [24-26], a CHO cell mutant not expres-
sing dihydroxyacetone-phosphate acyltransferase (EC
2.3.1.42), a peroxisomal enzyme essential for plasmalo-
gen synthesis. These cells possess plasmalogen levels
that are 5 to 10% of those measured in control CHO
cells [25]. In a targeted metabolomics analysis utilizing
four GC-MS panels that assay over 200 metabolic inter-
mediates in amino acid, nucleotide, alcohol, sugar,
polyol, fatty acid, and organic acid pathways [26], we
observed that N-Rel cells had large increases in the
intracellular diamines putrescine and cadaverine. In this
study we report our findings regarding the effects of
plasmalogen replacement [27] and of ibuprofen treat-
ment on cellular levels of diamines, diamine synthesis,
and diamine exporter function in CHO [28] and NRel
[24] cells.

Materials and methods
Tissue Culture
CHO and NRel-4 cells (generous gift of Dr. R.A. Zoeller,
Boston University) were cultured (10 cm2 plates) in
DMEM:F12 (Mediatech) supplemented with 10% FBS
(Invitrogen) and 1% antibiotic/antimycotic (Invitrogen).
Cells were grown at 37°C in a 5% CO2 incubator and
treated with ibuprofen or PPI-1011, an ether lipid plas-
malogen precursor, in DMSO at 80% confluence. At the
conclusion of incubations, the wells were washed twice
with cold phosphate buffered saline (PBS) and the plates
harvested with versene/Trypleexpress and stored at -80°
C until analyzed.

Putrescine Release
Cells were incubated with DMSO (0.05% final), ibupro-
fen (10 μM) or PPI-1011 (50 μM) for 48 hr. Next the
cells were washed with PBS and incubated in Hank’s
Balanced Salt Solution (HBSS) containing 700 μM argi-
nine, to support cellular ornithine synthesis, and 15 mM

HEPES (pH7.4) for 1.5 hr. The medium was collected,
spiked with [2H4]putrescine, dried with a centrifugal
evaporator and assayed for released putrescine. Cells
were harvested and the released putrescine expressed as
a percentage of the total cellular pool of putrescine.

Putrescine Synthesis
Cells were incubated with 100 μM [13C5]ornithine in
HBSS containing 700 μM arginine and 15 mM HEPES
(pH7.4) for 30 min. Cells were washed with cold PBS
and harvested as described above, prior to measurement
of cellular [13C5]ornithine and [13C4]putrescine pools.

Diamine Quantitation
Cells were sonicated in 1.2 ml of acetonitrile:MeOH:for-
mic acid (800:200:2.4) containing [2H4]putrescine, [

2H4]
cadaverine and [2H5]ornithine (Cambridge and CDN
Isotopes) as internal standards. For the putrescine synth-
esis experiments, [2H4]cadaverine was used as the inter-
nal standard. The cell lysates were transferred to 1.5 ml
microtubes, sonicated and centrifuged at 4°C and 25,000
× g for 30 min. Next, 400 μL of the supernatant were
dried in a centrifugal evaporator. To the dried cell
extracts and the dried releasates were added 50 μL of
pentafluorobenzyl (PFB) bromide solution (50 μL PFB-
Br + 950 μL dimethylformamide) and 10 μL of diisopro-
pylamine as catalyst. The samples were heated with
shaking at 80°C for 1 hour and then vortexed with 200
μL of hexane/ethyl acetate (3:2). The tubes were then
centrifuged at 25,000 × g for 5 min to precipitate salts.
The supernatants were transferred to autosampler vials
for GC-MS analyses.
The PFB derivatives were analyzed by ammonia NCI-

GC-MS via monitoring the [M-181-3(HF)]- anions for
putrescine (567), [2H4]putrescine (571), cadaverine
(581), and [2H4]cadaverine (585). The [M-181]- anions
were monitored for ornithine (671.1), [2H5]ornithine
(676.2), lysine (658.1) and [2H4]lysine (689.1). All GC-
MS analyses were performed with an Agilent 7890A GC
and Agilent 5975C mass analyzer. The GC column was
a 30 m HP-5MS (0.25 mm ID; 0.25 μm film).

Immunocytochemistry
CHO and NRel cells were grown on glass coverslips
(Thermo Scientific) until plates were approximately 50%
confluent. Cells were then fixed by flooding coverslips
with 4% paraformaldehyde in PBS for 10 minutes. Fol-
lowing two 5 min rinses in PBS the cells were blocked
with 3% skim milk in 0.1% triton X100 PBS for 20 min-
utes. Cells were stained with an anti-SLC3A2 primary
antibody (1:50, Santa Cruz Biotechnology) for 2 hours at
room temperature. Excess antibody was removed by rin-
sing twice in PBS before exposing cells to labeled sec-
ondary IgG Alexa 594 antibody (1:400, Invitrogen) for 1
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hr at room temperature. Coverslips where then rinsed
twice in PBS before applying Hoescht 33258 for 10 min
to stain all nuclei. Finally, cells were rinsed twice more
in PBS before mounting in Prolong (Molecular Probes)
and viewed by fluorescence microscopy.

Data Analyses
Data are presented as mean ± SEM for 6 to 8 plates.
Metabolite levels were expressed on a per mg protein
basis. GC-MS analyses were performed using 5 point
standard curves (reference standards at 0.2 to 10 times
the stable isotope internal standard). Data were analyzed
by 1-way ANOVA, followed by the Tukey-Kramer test
for multiple comparisons.

Results
CHO and NRel Diamine Levels
NRel-4 steady-state levels of the diamines putrescine
and cadaverine were approximately 3-fold and 2-fold of
CHO levels, respectively (Table 1). There was no differ-
ence in the levels of ornithine, the direct precursor of
putrescine or in lysine, the direct precursor of cadaver-
ine. Arginine levels also were the same in both cell
lines. The diamine exporter, as visualized with antibo-
dies to SLC3A2, was similarly expressed in the cell
membrane of both CHO and N-Rel cells (Figure 1), as
reported previously for CHO cells [18].

Ibuprofen Effects
Incubations with ibuprofen were found to decrease dia-
mine concentrations in a concentration- and time-
dependent manner in both CHO and NRel cells. The
concentration-response curves were very steep, with a
maximum effect of 50% decreases in diamine levels (Fig-
ure 2). Time-course studies indicated that the actions
were time-dependent, achieving maximum response by
24 hr in CHO cells but by 12 hr in NRel-4 cells (Figure
3). The ability of ibuprofen to lower cellular putrescine
was demonstrated to lack stereospecificity (data not
shown) and involved increased efflux of putrescine (Fig-
ure 4). Synthesis of putrescine from labeled ornithine
was not altered in NRel-4 cells by ibuprofen treatment
(Figure 4).

Plasmalogen Effects
The cellular levels of diamines in NRel-4 cells were
restored to normal levels (Figure 5) by augmenting plas-
malogens with the ether lipid precursor, PPI-1011
[25,27]. Augmenting cellular plasmalogens in CHO cells
also resulted in a small but significant reduction in cel-
lular diamine levels (Figure 5). As with ibuprofen, PPI-
1011 augmentation of cellular plasmalogens did not
alter synthesis of putrescine from labeled ornithine (Fig-
ure 4) but did augment cellular export of putrescine
(Figure 4).

Discussion
Cancer chemoprevention strategies [29] represent a clin-
ical approach to augmenting endogenous cytoprotective
mechanisms to prevent cancer development and consti-
tute an alternative approach to the never-ending search
for the magic bullet that only kills cancer cells. Areas of
focus in cancer chemoprevention currently include
metabolomics of endogenous anticancer metabolites
[1,2]; mechanistic studies of the established cancer pre-
vention provided by regular aspirin or NSAID use [7];
studies of the roles and mechanisms of dietary omega-3
fatty acids in cancer prevention [20,21]; and down-

Table 1 Steady-state levels of amino acids and diamines
in untreated CHO and N-Rel cells.

Parameter CHO N-Rel

Putrescine (nmol/mg protein) 2.06 ± 0.098 6.69 ± 0.74*

Cadaverine (pmol/mg protein) 123.1 ± 5.1 231.4 ± 27.0*

Ornithine (pmol/mg protein) 703.4 ± 73.4 682.0 ± 41.9

Lysine (nmol/mg protein) 15.1 ± 1.85 13.5 ± 0.90

Arginine (nmol/mg protein) 12.2 ± 0.49 11.6 ± 0.64

Data are presented as mean ± SEM (N = 8). *, p < 0.01

Figure 1 Cultured CHO and NRel cells stained with an anti-
SLC3A2 antibody (red) and Hoescht 33258 stain for nuclei
(blue), at a 20× magnification.
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regulation of polyamine synthesis to block cancer devel-
opment [3-6,8,9,11,13].
Putrescine and cadaverine are diamines that have been

shown to be increased in a number of cancer tissues,

including cervical, colon, endometrial, oral cavity squa-
mous cell, ovarian, pancreatic, and prostate [30-33]. Cel-
lular studies have also demonstrated that a large
fraction of polyamine metabolism is comprised of
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Figure 2 Steep concentration-dependent decreases in cellular putrescine and cadaverine levels in CHO and NRel-4 cells incubated
with ibuprofen (0-50 μM). Fresh medium and ibuprofen were provided at time 0 and at 24 hr. of a 48 hr. incubation. Decreases in putrescine
and cadaverine levels, with 2, 10 and 50 μM ibuprofen, were significant (P < 0.05) for both CHO and NRel-4 cells. N = 6. Mean ± SEM.
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Figure 3 Time course of decreases in cellular putrescine in CHO and NRel-4 cells during incubation with 50 μM ibuprofen. N = 6. Mean
± SEM. Decreases were significant (p < 0.01) in NRel cells by 6 hr and by 24 hr in CHO cells.
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Figure 4 Total cellular putrescine levels (nmol/mg protein); [13C5]ornithine decarboxylation to [13C4]putrescine, expressed as atom
percent excess (APE); and levels of putrescine released into the medium, expressed as a percentage of the total cellular putrescine
pool. Labeling of cellular [13C4]putrescine with [13C5]ornithine (100 μM) was a 30 min. incubation. The intracellular ornithine pool was > 97%
[13C5]labeled in all cells. Efflux of putrescine was measured using a 1.5 hr incubation. Drug concentrations were 10 μM (ibuprofen) and 50 μM
(PPI-1011) for 48 hr. prior to the experiment. N = 6. Mean ± SEM. *, p < 0.01 vs. CHO; #, p < 0.01 vs. untreated NRel.
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cellular export of putrescine [34] via the diamine expor-
ter [17,18]. Similarly, the diamine cadaverine, which is
generated by ODC metabolism of lysine (Figure 6), is
exported via the diamine exporter [17,18,35]. Previous

studies of the anti-cancer actions of aspirin have
demonstrated that aspirin decreases polyamine synthesis
at the level of ODC [12] and increases polyamine meta-
bolism via induction of spermine/spermidine N-
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Figure 5 Normalization of NRel-4 putrescine and cadaverine levels after a 72 hr incubation with PPI-1011 (100 μM). N = 6. Mean ±
SEM. *, p < 0.01 vs. CHO; #, p < 0.01 vs. untreated NRel.
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acetyltransferase [SAT; [36]]. With our studies of ibu-
profen, we did not detect any drug effects on polyamine
synthesis; however, we did measure increased cellular
efflux of putrescine. In this regard, SAT has been shown
to be complexed with the diamine exporter, thereby
coupling polyamine acetylation and export [18]. Previous
data demonstrating induction of SAT with aspirin [36]
and our data demonstrating increased diamine exporter
function with ibuprofen, suggest that augmentation of
the diamine exporter -SAT membrane complex may be
a mechanism of action that contributes to the cancer
chemoprevention provided by aspirin and NSAIDs. Our
data demonstrating that the actions of ibuprofen on cel-
lular diamines are not stereospecific are consistent with
previous publications demonstrating that the anti-cancer
actions of aspirin [12] and NSAIDs [37] are independent
of COX inhibition. These observations also suggest that
safer analogs devoid of COX inhibition might be opti-
mal drug candidates for cancer chemoprevention. Use of
the ODC inhibitor, difluromethylornithine that reduces
cellular polyamine levels is one such approach currently
in clinical trials [8,11].
Our data also are the first to demonstrate modulation

of the diamine exporter by docosahexaenoic acid
(DHA)-containing ethanolamine plasmalogens. Augmen-
tation of plasmalogens with the ether lipid precursor,
PPI-1011 [25,27] decreased putrescine levels in CHO
cells and normalized putrescine levels in NRel-4 cells to
CHO cell levels. As with ibuprofen this appears to
involve increased putrescine export to control intracellu-
lar diamine homeostasis. These data are consistent with

previous reports demonstrating that decrements in
membrane plasmalogens dramatically alter membrane
function via alterations in membrane lipid rafts which in
turn leads to deregulation of cholesterol transport
[24,38], muscarinic membrane receptors [39] and b-
adrenergic membrane receptors [40,41].
In summary, our understanding of the role(s) of polya-

mines in the chemoprevention of gastrointestinal malig-
nancies continues to grow. Our data demonstrate the
importance of the diamine exporter-SAT complex (Fig-
ure 6) in maintaining intracellular diamine levels and
further show that a number of dietary and pharmaceuti-
cal approaches are available to provide protection
against gastrointestinal malignancies.
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