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Abstract
Background  Despite abundant evidence on the epidemiological risk factors of metabolic diseases related to 
hyperuricemia, there is still insufficient evidence regarding the nonlinear relationship between triglyceride-glucose 
(TyG) index and hyperuricemia. Thus, the purpose of this research is to clarify the nonlinear connection between TyG 
and hyperuricemia.

Methods  From 2011 to 2018, a cross-sectional study was carried out using data from the National Health and 
Nutrition Examination Survey (NHANES). This study had 8572 participants in all. TyG was computed as Ln [triglycerides 
(mg/dL) × fasting glucose (mg/dL)/2]. The outcome variable was hyperuricemia. The association between TyG and 
hyperuricemia was examined using weighted multiple logistic regression, subgroup analysis, generalized additive 
models, smooth fitting curves, and two-piecewise linear regression models.

Results  In the regression model adjusting for all confounding variables, the OR (95% CI) for the association between 
TyG and hyperuricemia was 2.34 (1.70, 3.21). There is a nonlinear and reverse U-shaped association between TyG and 
hyperuricemia, with a inflection point of 9.69. The OR (95% CI) before the inflection point was 2.64 (2.12, 3.28), and 
after the inflection point was 0.32 (0.11, 0.98). The interaction in gender, BMI, hypertension, and diabetes analysis was 
statistically significant.

Conclusion  Additional prospective studies are required to corroborate the current findings, which indicate a strong 
positive connection between TyG and hyperuricemia among adults in the United States.
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Introduction
Uric acid is produced when purine nucleotides are 
metabolized. The condition known as hyperuricemia 
occurs when uric acid levels rise over a certain point due 
to either excessive uric acid synthesis or inadequate uric 
acid elimination. It affects patients of all ages and gen-
ders, and its prevalence is on the rise globally [1, 2]. Up to 
2016, the global prevalence of hyperuricemia has reached 
21% [3], and the prevalence of hyperuricemia varies by 
geographic region. For example, in South Korea, it is 
11.4% [4], and a survey conducted among adults aged 
18–59 in China showed a prevalence of 15% for hyper-
uricemia [5]. Data from the 2007–2016 National Health 
and Nutrition Examination Survey (NHANES) show that 
14.6–20% of Americans suffer with hyperuricemia [6]. 
Furthermore, hyperuricemia poses a serious threat to 
public health as numerous epidemiological studies have 
confirmed that it is a significant risk factor for a number 
of chronic diseases, including gout, cardiovascular dis-
eases, chronic kidney disease, hypertension, metabolic 
syndrome, and many others [7–10], posing a serious 
threat to public health.

Insulin resistance (IR) is a physiological and patho-
logical process closely associated with hyperuricemia [8]. 
Epidemiological studies have confirmed the close asso-
ciation between IR and serum urate concentration [11, 
12]. High insulin levels induced by IR lead to reduced 
uric acid excretion and increased production, resulting in 
uric acid accumulation [13]. Reducing IR has been shown 
in studies to lower uric acid levels and lower the chance 
of developing gout [14]. An animal experimental study 
from Japan also found that insulin can promote uric acid 
reabsorption through urate transporter 1 and ATP-bind-
ing cassette sub-family G member 2 [15]. Additionally, 
a nationwide cohort study confirmed a significant asso-
ciation between insulin resistance and an increased risk 
of hyperuricemia [16]. When assessing IR, the glucose 
clamp method is regarded as the gold standard. However, 
the use of this detection technology in clinical practice is 
restricted because of its complexity and comparatively 
expensive cost. The body’s level of IR can be determined 
simply using the triglyceride-glucose (TyG) index [17]. 
The two main factors used to compute TyG are fasting 
triglycerides (TG) and fasting glucose (FPG). Multiple 
studies have confirmed its reliability in predicting vari-
ous diseases related to IR [18–20]. TyG and hyperuri-
cemia are significantly correlated in individuals with 
non-alcoholic fatty liver disease, diabetic nephropathy, 
and primary hypertension, according to earlier Chinese 
research [21–23]. Li et al. discovered that TyG might pre-
dict the coexistence of hypertension and hyperuricemia 
in the elderly population [24]. An additional cross-sec-
tional study conducted in Northeast China examined the 
validity of TyG in determining the risk of hyperuricemia 

in people 40 years of age and older [25]. While prior 
research has indicated a connection between hyperuri-
cemia and TyG index, these investigations mostly exam-
ined the Chinese population and had rather small sample 
sizes. The relationship between the TyG index and hyper-
uricemia is understudied in the US population. Wang et 
al. found a positive correlation between hyperuricemia 
and the TyG index in non-diabetic populations in the 
United States [26]. Furthermore, there are no reports on 
the relationship between the TyG index and hyperurice-
mia in the general adult population in the United States.

Therefore, for this cross-sectional analysis, NHANES 
data from 2011 to 2018 were used. This study aims to 
explore the relationship between TyG and adult Ameri-
cans’ hyperuricemia.

Methods
Study design and population
This study made use of cross-sectional data from the 
National Center for Health Statistics (NCHS) 2011–2018 
NHANES, a nationwide survey that used a sophisticated 
sampling design. The survey, conducted biennially since 
1999, covers demographic, dietary, examination, labo-
ratory, and questionnaire data [27, 28]. All participants 
completed informed permission forms, and the NHANES 
survey procedures and detailed data are available on the 
official website after being approved by NCHS.

After excluding 16,539 participants under the age of 20, 
247 pregnant participants, 2,440 participants with miss-
ing FPG and TG data, and 11,358 participants with miss-
ing data on uric acid BMI, blood glucose, hypertension 
and related covariates, the final analysis includes 8,572 
participants in total (Fig. 1).

Definitions of the exposure and outcome variables
Employing an automatic analyzer, blood samples from 
individuals fasting for at least 8 h but less than 24 h were 
measured for TG and FPG using enzymatic methods. The 
TyG can be computed using the formula Ln [TG (mg/
dL) × FPG (mg/dL)/2] [29]. By using uricase and H2O2 to 
undergo enzymatic oxidation, the concentration of uric 
acid in serum was determined and reported in milligrams 
per deciliter (mg/dL). This can be multiplied by 59.48 to 
get micromoles per liter (µmol/L). Serum uric acid lev-
els ≥ 416 µmol/L (7  mg/dL) in men and ≥ 357 µmol/L 
(6  mg/dL) in women are classified as hyperuricemia, 
given the diagnostic criteria for the condition [30].

Definition of covariates
To examine the distinct link between hyperuricemia 
and TyG, we adjusted for potential confounding fac-
tors, including demographics, lifestyle, anthropomet-
ric measurements, laboratory examinations, and health 
conditions. Age, gender, race, marital status, degree of 



Page 3 of 11Qiu et al. Lipids in Health and Disease          (2024) 23:145 

education, and the ratio of household income to pov-
erty were the main demographic factors; lifestyle mainly 
encompassed smoking status, alcohol consumption, and 
physical activity; anthropometric measurements pri-
marily incorporated BMI; laboratory examination data 
mainly included HbA1c, LDL, HDL, eGFR, and serum 
creatinine; health conditions comprised hypertension, 
diabetes, arthritis, stroke, and coronary heart disease.

According to survey findings, “Yes” indicates that a 
person has smoked at least 100 cigarettes in their life-
time, whereas “no” indicates that they have smoked fewer 
than 100 [31]. Similarly, alcohol consumption is classified 
as “yes” (consuming at least 12 drinks per year) or “no” 
(consuming fewer than 12 drinks per year) [32]. Physical 
activity is grouped into three categories—active, mod-
erately active, and inactive—following the guidelines for 
physical activity [33]. Three categories are used to clas-
sify education levels: below high school, high school, 

and above high school. Parameters such as HDL, LDL, 
HbA1c, and serum creatinine are measured from each 
participant’s fasting venous blood using an automated 
analyzer. Conditions like high blood pressure, heart dis-
ease, stroke, and arthritis are categorized based on self-
reported medical diagnosis. The three factors used to 
identify diabetes are a self-reported medical diagnosis, a 
glycosylated hemoglobin (HbA1c) of 6.5% or above, or a 
fasting blood glucose level of 7.0 mmol/L or higher. The 
widely accepted algorithm developed by the Chronic 
Kidney Disease Epidemiology Collaboration is used to 
calculate the estimated glomerular filtration rate (eGFR) 
[34].

Statistical analyses
Sample weights were appropriately applied in statistical 
analyses to account for complex sampling designs, fol-
lowing guidelines from the NHANES official website. 

Fig. 1  From chart of sample selection from the NHANES 2011–2018
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All of the study population’s descriptive statistics were 
calculated, and the TyG index was divided into quartiles. 
The categorical data were reported as percentages, and 
the continuous variables were shown as mean ± standard 
deviation (SD). To examine differences between con-
tinuous and categorical data, weighted chi-square tests 
and weighted linear regression models were employed, 
respectively. In accordance with the STROBE statement 
[35], three distinct multivariate logistic regressions were 
run to investigate the relationship between TyG and 
hyperuricemia. While Model 2 and Model 3 adjusted 
for age, gender, and race, educational level, marital sta-
tus, RIP, smoking, alcohol consumption, physical activity, 
BMI, HDL, LDL, HbA1c, serum creatinine, eGFR, hyper-
tension, diabetes, arthritis, stroke, and coronary heart 
disease, Model 1 left covariates unadjusted. Relationship 
consistency was verified by a linear trend test, and non-
linear relationships were investigated using a Generalized 
Additive Model (GAM) with smooth curve fitting. In the 
presence of nonlinearity, a recursive algorithm identified 
significant turning points in the TyG and hyperuricemia 
relationship. Threshold effect analysis assessed differ-
ences between logistic regression models and two-part 
logistic regression models. Additionally, subgroup analy-
ses and interaction tests were performed for age, gender, 
BMI, hypertension, diabetes, stroke, arthritis, and coro-
nary heart disease, with adjustments for corresponding 
confounding factors. The results were considered cred-
ible if the interaction P-value was not significant; if it 
was, then likely subgroup variations were considered. 
EmpowerStats (http://www.empowerstats.com) and R 
(version 4.2.2) were used for all statistical analyses, with a 
P-value < 0.05 denoting statistical significance.

Results
Baseline characteristics of participants
Table 1 displays the baseline attributes of the individuals 
in the TyG index. Compared to the lowest TyG quartile, 
individuals in the TyG Q4 group exhibited a tendency 
towards older age, male gender, Mexican American eth-
nicity, lower educational attainment, marital status, non-
smoking behavior, lower RIP levels, lower HDL, lower 
eGFR, and higher prevalence of hypertension, diabe-
tes, coronary heart disease, arthritis, stroke. Addition-
ally, they displayed higher levels of BMI, HbA1c, FPG, 
TG, LDL, serum creatinine, and uric acid (all P < 0.05). 
Notably, there was a significantly increased frequency of 
hyperuricemia (P < 0.05) in participants with high TyG 
levels.

Association between TyG and its components and 
hyperuricemia
Table  2 displays the relationship between TyG and its 
components and hyperuricemia. After adjusting for 

potential confounding variables (Model 3), the study 
found a significant positive correlation between TG and 
hyperuricemia (OR = 1.68, 95% CI: 1.38, 2.04). Further 
dividing TG into quartiles, in Model 3, participants in 
the highest quartile of TG had a 1.95-fold higher risk of 
hyperuricemia compared to those in the lowest quartile 
(OR: 2.95, 95% CI: 1.83, 4.75). Additionally, a significant 
dose-response relationship was found (P < 0.05). How-
ever, after adjusting for potential confounding variables 
(Model 3), the study did not find a significant associa-
tion between FPG and hyperuricemia (OR = 1.00, 95% CI: 
0.99, 1.01). Further dividing FPG into quartiles, in Model 
3, participants in quartile 4 of FPG had a significantly 
positive correlation with hyperuricemia compared to Q1 
(OR = 1.84, 95% CI: 1.14, 2.99). Our study also found a 
significant dose-response relationship (P < 0.05). More-
over, the investigation’s findings demonstrated a positive 
correlation between TyG and the likelihood of hyperuri-
cemia. Variable adjustments bolstered this association, 
and all multivariate logistic regression models (model 1: 
OR = 1.70, 95% CI: 1.51,1.91; model 2: OR = 1.69, 95% CI: 
1.50,1.92; model 3: OR = 2.34, 95% CI: 1.70,3.21) showed 
positive correlations regardless of whether confound-
ing variables were adjusted. It’s interesting to note that a 
unit increase in the TyG index was linked to a 1.34-fold 
increase in the risk of hyperuricemia after controlling 
for possible confounding variables (model 3; Table  2). 
When TyG was further split into quartiles using Q1 as 
the reference group and different variables were taken 
into account in model 3, the risk of hyperuricemia was 
3.85 times higher for those in the highest quartile of the 
TyG index than for those in the lowest quartile (OR: 4.85, 
95% CI: 3.03, 7.78) (Table 2). Furthermore, a noteworthy 
dose-response correlation (P < 0.05) was noted.

However, the odds ratios (ORs) for Q2, Q3, and Q4 
show that there might be a non-linear correlation; the 
95% confidence intervals (CIs) for these three questions 
are 1.54 (0.98, 2.14), 2.17 (1.44, 3.25), and 4.85 (3.03, 
7.78), respectively. Using GAM and smooth curve fitting, 
a non-linear association between TyG and hyperuricemia 
was found (Fig.  2), adding to the validity of the results. 
Further exploration through threshold effect analy-
sis revealed a turning point at 9.69 (Table 3). Before the 
turning point, TyG and hyperuricemia exhibited a sig-
nificant positive correlation, with an OR (95% CI) of 2.64 
(2.12, 3.28). Subsequently, after the turning point, TyG 
and hyperuricemia showed a significant negative correla-
tion, with an OR (95% CI) of 0.32 (0.11, 0.98) (Table 3). 
Additionally, after stratification by age and gender, our 
results also indicate a non-linear relationship between 
TyG and hyperuricemia (Figs. 3 and 4).

To further evaluate the association between TyG and 
hyperuricemia in various categories, we also conducted 
interaction tests and stratified analysis accounting for 

http://www.empowerstats.com
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Q1, N = 2141 Q2, N = 2145 Q3, N = 2143 Q4, N = 2143 P-value
TyG index 7.86 ± 0.27 8.44 ± 0.13 8.89 ± 0.14 9.70 ± 0.50 < 0.001
Age(years) 42.70 ± 17.48 49.08 ± 17.95 51.67 ± 16.90 53.34 ± 15.80 < 0.001
Gender (%) < 0.001
  Male 896 (41.85%) 1042 (48.58%) 1096 (51.14%) 1246 (58.14%)
  Female 1245 (58.15%) 1103 (51.42%) 1047 (48.86%) 897 (41.86%)
Race (%) < 0.001
  Mexican American 180 (8.41%) 253 (11.79%) 298 (13.91%) 372 (17.36%)
  Other Hispanic 163 (7.61%) 213 (9.93%) 247 (11.53%) 258 (12.04%)
  Non-Hispanic White 742 (34.66%) 854 (39.81%) 890 (41.53%) 846 (39.48%)
  Non-Hispanic Black 738 (34.47%) 529 (24.66%) 405 (18.90%) 305 (14.23%)
  Non-Hispanic Asian 239 (11.16%) 219 (10.21%) 232 (10.83%) 289 (13.49%)
  Other Race 79 (3.69%) 77 (3.59%) 71 (3.31%) 73 (3.41%)
Educational level (%) < 0.001
  < High school 347 (16.21%) 426 (19.86%) 460 (21.47%) 550 (25.66%)
  High school 449 (20.97%) 507 (23.64%) 490 (22.87%) 494 (23.05%)
  > High school 1345 (62.82%) 1212 (56.50%) 1193 (55.67%) 1099 (51.28%)
Marital status (%) < 0.001
  Married 886 (41.38%) 1043 (48.62%) 1144 (53.38%) 1199 (55.95%)
  Widowed 111 (5.18%) 164 (7.65%) 173 (8.07%) 173 (8.07%)
  Divorced 200 (9.34%) 227 (10.58%) 237 (11.06%) 259 (12.09%)
  Separated 83 (3.88%) 70 (3.26%) 73 (3.41%) 78 (3.64%)
  Never married 657 (30.69%) 454 (21.17%) 341 (15.91%) 268 (12.51%)
  Living with partner 204 (9.53%) 187 (8.72%) 175 (8.17%) 166 (7.75%)
Smoking status (%) < 0.001
  No 1345 (62.82%) 1241 (57.86%) 1198 (55.90%) 1103 (51.47%)
  Yes 796 (37.18%) 904 (42.14%) 945 (44.10%) 1040 (48.53%)
Alcohol consumption (%) 0.113
  No 822 (38.39%) 890 (41.49%) 882 (41.16%) 841 (39.24%)
  Yes 1319 (61.61%) 1255 (58.51%) 1261 (58.84%) 1302 (60.76%)
Physical activity (%) 0.470
  Inactive 1232 (57.54%) 1257 (58.60%) 1271 (59.31%) 1306 (60.94%)
  Less active 168 (7.85%) 169 (7.88%) 167 (7.79%) 160 (7.47%)
  Namely active 741 (34.61%) 719 (33.52%) 705 (32.90%) 677 (31.59%)
  RIP 2.60 ± 1.68 2.59 ± 1.64 2.52 ± 1.63 2.41 ± 1.61 < 0.001
  BMI (kg/m2) 26.84 ± 6.83 28.93 ± 7.11 30.22 ± 6.92 31.44 ± 6.70 < 0.001
  HbA1c (%) 5.40 ± 0.59 5.55 ± 0.61 5.73 ± 0.80 6.47 ± 1.70 < 0.001
  FPG (mmol/l) 4.87 ± 0.66 5.23 ± 0.86 5.55 ± 1.22 7.36 ± 3.72 < 0.001
  TG (mmol/l) 0.70 ± 0.18 1.14 ± 0.20 1.72 ± 0.36 3.36 ± 2.00 < 0.001
  LDL (mmol/l) 2.60 ± 0.75 2.97 ± 0.87 3.11 ± 0.97 3.02 ± 1.05 < 0.001
  HDL (mmol/l) 1.62 ± 0.43 1.45 ± 0.39 1.31 ± 0.34 1.10 ± 0.28 < 0.001
  Serum creatinine (umol/L) 77.64 ± 42.38 79.33 ± 42.32 80.22 ± 29.08 83.95 ± 49.28 < 0.001
  Uric acid (umol/L) 295.90 ± 76.44 318.10 ± 80.52 333.67 ± 84.16 349.02 ± 87.21 < 0.001
  eGFR (ml/min per 1.73m2) 108.82 ± 31.88 102.87 ± 32.19 99.21 ± 31.14 96.40 ± 32.55 < 0.001
Hypertension (%) < 0.001
  No 1604 (74.92%) 1458 (67.97%) 1257 (58.66%) 1130 (52.73%)
  Yes 537 (25.08%) 687 (32.03%) 886 (41.34%) 1013 (47.27%)
Diabetes (%) < 0.001
  No 2032 (94.91%) 1926 (89.79%) 1774 (82.78%) 1269 (59.22%)
  Yes 109 (5.09%) 219 (10.21%) 369 (17.22%) 874 (40.78%)
Arthritis (%) < 0.001
  No 2032 (94.91%) 1926 (89.79%) 1774 (82.78%) 1269 (59.22%)
  Yes 109 (5.09%) 219 (10.21%) 369 (17.22%) 874 (40.78%)
Coronary heart disease (%) < 0.001

Table 1  Baseline characteristics of the study population according to the quartiles of the TyG index
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gender, age, BMI, hypertension, diabetes, coronary 
heart disease, arthritis, and stroke. The positive link 
between TyG and hyperuricemia does not appear to be 
influenced by age, arthritis, coronary heart disease, or 
stroke, according to the results of our study. However, 
interactions were observed in gender, BMI, diabetes, 
and hypertension, with particular significance in female, 
non-obese, non-hypertensive, and non-diabetic popula-
tions (OR: 2.98, 95% CI: 2.27, 3.92), (OR: 3.33, 95% CI: 
2.56, 4.33), (OR: 2.62, 95% CI: 2.05, 3.35), (OR: 2.92, 95% 
CI: 2.32, 3.69) (Fig. 5). Therefore, we further explored the 
non-linear relationship between TyG and hyperurice-
mia through stratification. After stratification by gender, 

we found that their non-linear relationship still exists 
(Fig. 3). Furthermore, after stratification by BMI, hyper-
tension, and diabetes, we still observed a non-linear asso-
ciation (Supplementary Figs. 1, 2 and 3).

Discussion
Based on NHANES data from 2011 to 2018, our large-
sample cross-sectional analysis demonstrates a strong 
correlation between elevated TyG and a higher risk of 
hyperuricemia. Even when categorizing the TyG into 
quartiles (Q1-Q4), this positive correlation persists. In 
the adult population in the United States, we found a 
non-linear association between hyperuricemia and the 

Table 2  Association between TyG and its components and hyperuricemia
OR (95%CI) P-value Model 1 Model 2 Model 3
Continuous TG 1.15(1.05, 1.27) 0.005 1.15(1.04, 1.28) 0.009 1.68(1.38, 2.04) < 0.001
TG quartiles
  Q1 Reference Reference Reference
  Q2 1.40(1.11, 1.77) 0.006 1.41(1.11, 1.79) 0.007 1.07(0.74, 1.53) 0.732
  Q3 2.04(1.61, 2.59) < 0.001 2.05(1.61, 2.62) < 0.001 1.88(1.26, 2.80) 0.004
  Q4 2.70(2.08, 3.51) < 0.001 2.73(2.07, 3.60) < 0.001 2.95(1.83, 4.75) < 0.001
P for trend < 0.001 < 0.001 < 0.001
Continuous FPG 1.00(1.00, 1.01) < 0.001 1.00(1.00, 1.00) 0.004 1.00(0.99, 1.01) 0.876
FPG quartiles
  Q1 Reference Reference Reference
  Q2 1.25(0.99, 1.57) 0.062 1.22(0.97, 1.54) 0.097 0.69(0.43, 1.11) 0.135
  Q3 1.62(1.25, 2.09) < 0.001 1.51(1.16, 1.96) 0.004 0.93(0.61, 1.43) 0.745
  Q4 2.52(2.04, 3.12) < 0.001 2.27(1.79, 2.87) < 0.001 1.84(1.14, 2.99) 0.020
P for trend < 0.001 < 0.001 0.005
Continuous TyG 1.70(1.51, 1.91) < 0.001 1.69 (1.50, 1.92) < 0.001 2.34 (1.70, 3.21) < 0.001
TyG quartiles
  Q1 Reference Reference Reference
  Q2 1.61 (1.26, 2.06) < 0.001 1.62 (1.26, 2.08) < 0.001 1.54 (0.98, 2.14) 0.072
  Q3 2.22 (1.74, 2.83) < 0.001 2.22(1.72, 2.86) < 0.001 2.17 (1.44, 3.25) < 0.001
  Q4 3.46 (2.67, 4.49) < 0.001 3.45 (2.62, 4.55) < 0.001 4.85 (3.03, 7.78) < 0.001
P for trend < 0.001 < 0.001 < 0.001
Model 1:no covariates were adjusted

Model 2: age, sex and race were adjusted

Model 3: age, sex, race, educational level, marital status, smoking status, alcohol consumption, physical activity, BMI, RIP, LDL, HDL, HbA1c, Serum creatinine, eGFR, 
hypertension, diabetes, arthritis, coronary heart disease and Stroke were adjusted

Q1, N = 2141 Q2, N = 2145 Q3, N = 2143 Q4, N = 2143 P-value
  No 2086 (97.43%) 2081 (97.02%) 2054 (95.85%) 2023 (94.40%)
  Yes 55 (2.57%) 64 (2.98%) 89 (4.15%) 120 (5.60%)
Stroke (%) < 0.001
  No 2089 (97.57%) 2070 (96.50%) 2059 (96.08%) 2061 (96.17%)
  Yes 52 (2.43%) 75 (3.50%) 84 (3.92%) 82 (3.83%)
Hyperuricemia (%) < 0.001
  No 1933 (90.28%) 1799 (83.87%) 1715 (80.03%) 1590 (74.20%)
  Yes 208 (9.72%) 346 (16.13%) 428 (19.97%) 553 (25.80%)
Mean ± SD for continuous variables: P value was calculated by weighted linear regression model. % for categorical variables: P value was calculated by weighted 
chi-square test

BMI body mass index, RIP ratio of family income to poverty, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, HbA1c 
glycohemoglobin, FPG fasting plasma glucose, TG triglycerides, eGFR glomerular filtration rate, TyG index triglyceride-glucose index

Table 1  (continued) 
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TyG index after applying a smooth curve. There is a seg-
mented inhibitory effect between the TyG index and 
hyperuricemia, with 9.69 as a significant inflection point. 
Before this point, a significant increase in hyperuricemia 
risk was reported with the increasing TyG, and after this 
point, a significant decrease in hyperuricemia risk was 
observed with increasing TyG index. Additionally, our 
study presents the most detailed stratified analysis.

The TyG index and hyperuricemia had a linear posi-
tive connection, according to a prior cross-sectional 
study from northeastern China, with a 54.1% rise in the 
probability of hyperuricemia for every unit increase in 
the TyG [25]. A cross-sectional study conducted in Thai-
land also found that among Royal Thai Army members, 
the TyG index and hyperuricemia had a substantial posi-
tive connection that persisted regardless of the soldiers’ 
obesity condition [36]. Qing et al. evaluated the relation-
ship between TyG and hyperuricemia in a cohort study 
involving 42,387 Chinese patients having physical exams. 
The findings demonstrated a favorable relationship 
between hyperuricemia and the TyG index [37]. These 
studies support our findings. In addition, our research 
revealed a strong positive association between TyG and 
hyperuricemia, with each unit rise in TyG associated 
with a 1.34-fold increase in the risk of hyperuricemia. It 
was also discovered that interactions occurred regard-
less of obesity, however in non-obese people this link was 
stronger.

In addition, after conducting subgroup analy-
ses and interaction tests, our study found that 

Table 3  Threshold effect analysis of TyG on hyperuricemia using 
a two-piecewise linear regression model
Hyperuricemia Adjust OR (95% CI) P
TyG
  Fitting by standard linear model 2.25(1.84,2.75) < 0.001
Fitting by two-piecewise linear model
  Inflection point 9.69
  < 9.69 2.64(2.12,3.28) < 0.001
  > 9.69 0.32(0.11,0.98) 0.046
  Log-likelihood ratio < 0.001
age, sex, race, educational level, marital status, smoking status, alcohol 
consumption, physical activity, BMI, RIP, LDL, HDL, HbA1c, Serum creatinine, 
eGFR, hypertension, diabetes, arthritis, coronary heart disease and Stroke were 
adjusted

Fig. 2  Smooth curve fitting for TyG and hyperuricemia. Non-linear relationship between TyG and hyperuricemia was detected by the generalized addi-
tive model. The solid red line represents the smooth curve fit between variables. Blue dotted lines represent the 95% CI from the fit. Adjustment factors 
included age, sex, race, educational level, marital status, smoking status, alcohol consumption, physical activity, BMI, RIP, LDL, HDL, HbA1c, Serum creati-
nine, eGFR, hypertension, diabetes, arthritis, coronary heart disease and Stroke
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gender, hypertension, and diabetes interacted with the 
relationship between TyG and hyperuricemia, especially 
in females, and this association was more pronounced in 
non-hypertensive and non-diabetic populations. Gender 
variations have been observed in the TyG index’s abil-
ity to detect hyperuricemia in the past, particularly in 
females [38], which is consistent with our study results. 
This may be because estrogen is a uric acid generator and 
is associated with complex metabolic endocrine factors, 
thereby affecting lipid metabolism and causing gender 
differences in lipid metabolism [39]. In hypertensive peo-
ple with an average age of 63.81 years, a study in China 
demonstrated a positive connection between TyG and 
hyperuricemia (OR = 2.04; 95%CI: 1.87 to 2.24) [40]. An 
additional cross-sectional study conducted in Chinese 
hospitals investigated the relationship between hyper-
uricemia and TyG in patients with hypertension. TyG 
and hyperuricemia were shown to positively correlate in 
hypertensive individuals; this correlation was more pro-
nounced in patients with grade 1–2 hypertension than 
in those with grade 3 hypertension [22]. This is consis-
tent with the trend observed in our study. Regardless of 
the existence of hypertension, we discovered a favorable 
connection between TyG and hyperuricemia, but this 

correlation was more pronounced in non-hypertensive 
individuals. Differences in demographic characteris-
tics and research methods may explain this discrepancy. 
Further research is needed to uncover these underly-
ing factors. Through a retrospective analysis, Han et 
al. [41] discovered a substantial positive connection 
between TyG and hyperuricemia in patients with diabe-
tes, whereas our study discovered an interaction between 
TyG and hyperuricemia in patients without diabetes. The 
observed occurrence could potentially be attributed to 
variations in the study population, ethnicity, and sample 
size. More study is required to validate these findings 
because there is a dearth of information regarding the 
connection between TyG and hyperuricemia in both dia-
betic and non-diabetic groups.

The mechanism of TyG in hyperuricemia is not yet 
clear, but the following biological mechanisms can be 
explained. Since TyG is computed by summing up TG 
and FPG, there is a strong correlation between the patho-
physiology of hyperuricemia and TG and FPG levels 
in the human body. Abnormalities in lipid metabolism 
result from the breakdown of elevated quantities of TG 
into free fatty acids, which are then transferred to dif-
ferent parts of the body and speed up the breakdown of 

Fig. 3  The association between TyG and hyperuricemia stratified by gender. Age, race, educational level, marital status, smoking status, alcohol consump-
tion, physical activity, BMI, RIP, LDL, HDL, HbA1c, Serum creatinine, eGFR, hypertension, diabetes, arthritis, coronary heart disease and Stroke were adjusted

 



Page 9 of 11Qiu et al. Lipids in Health and Disease          (2024) 23:145 

adenosine triphosphate. Lipid metabolism abnormalities 
cause kidney damage, reduce uric acid excretion, and 
consequently increase serum uric acid levels [42]. Fur-
thermore, high TG levels inhibit insulin receptor activity 
and quantity on adipocytes, competing with glucose to 
block insulin’s ability to bind to receptors and cause IR 
[43]. Excessive accumulation of glucose leads to hyper-
glycemia, alters the expression and activity of glucose 
transporter proteins in tissues, and reduces insulin sen-
sitivity [44, 45]. Notably, with an inflection point of 9.69, 
our study discovered a strong segmental inhibitory effect 
between TyG and hyperuricemia. TyG and hyperuri-
cemia had a substantial positive correlation up to 9.69, 
whereas a significant negative correlation followed after 
9.69. This differs from the results reported in previous 
studies, and one possible reason is speculated to be racial 
differences. Previous correlation studies have mainly 
focused on Asian countries such as China and Thailand, 
and racial differences have been shown to affect insulin 
sensitivity [46]. Also differences in demographic charac-
teristics and research methods may be potential factors. 
To sum up, additional pertinent research is required to 
validate our findings, particularly in the US population.

There are various restrictions on this study. First off, 
because the study is cross-sectional, we are unable to 
determine if TyG and hyperuricemia are causally related. 
The conclusions reached must be supported by further 
research. Second, although we included many relevant 
covariates and adjusted accordingly, there may still be 
interference from other confounding factors, such as 
hyperthyroidism, alcoholism, renal insufficiency, drugs, 
tumors, and other factors that affect uric acid levels. To 
substantiate the connection between hyperuricemia and 
the TyG index, more intervention studies ought to be 
carried out. Additionally, serum uric acid levels are influ-
enced by diets rich in purines, and the data on dietary 
questionnaires in NHANES are very limited, so we can-
not determine whether participants have a high-purine 
diet.

Conclusion
In general, hyperuricemia and the TyG index have a 
reverse U-shaped connection. In patients with TyG < 9.69, 
a higher risk of hyperuricemia is significantly correlated 
with a greater TyG. On the other hand, a higher TyG 
is substantially linked to a decreased risk of hyperuri-
cemia in patients with TyG > 9.69. These results imply 

Fig. 4  The association between TyG and hyperuricemia stratified by age. Gender, race, educational level, marital status, smoking status, alcohol consump-
tion, physical activity, BMI, RIP, LDL, HDL, HbA1c, Serum creatinine, eGFR, hypertension, diabetes, arthritis, coronary heart disease and Stroke were adjusted

 



Page 10 of 11Qiu et al. Lipids in Health and Disease          (2024) 23:145 

that the prevention and treatment of hyperuricemia 
may benefit from reducing or raising TyG levels within 
a specific range. Confirming the causal relationship and 
underlying mechanisms between them will require more 
investigation.
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