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Abstract 

Background In observational studies, there exists an association between obesity and epigenetic age as well as tel-
omere length. However, varying and partially conflicting outcomes have notably arisen from distinct studies on this 
topic. In the present study, two-way Mendelian randomization was used to identify potential causal associations 
between obesity and epigenetic age and telomeres.

Methods A genome-wide association study was conducted using data from individuals of European ancestry 
to investigate bidirectional Mendelian randomization (MR) regarding the causal relationships between obesity, 
as indicated by three obesity indicators (body mass index or BMI, waist circumference adjusted for BMI or WCad-
jBMI, and waist-to-hip ratio adjusted for BMI or WHRadjBMI), and four epigenetic age measures (HannumAge, Hor-
vathAge, GrimAge, PhenoAge), as well as telomere length. To assess these causal associations, various statistical 
methods were employed, including Inverse Variance Weighted (IVW), Weighted Median, MR Egger, Weighted Mode, 
and Simple Mode. To address the issue of multiple testing, we applied the Bonferroni correction. These methods were 
used to determine whether there is a causal link between obesity and epigenetic age, as well as telomere length, 
and to explore potential bidirectional relationships. Forest plots and scatter plots were generated to show causal asso-
ciations between exposures and outcomes. For a comprehensive visualization of the results, leave-one-out sensitivity 
analysis plots, individual SNP-based forest plots for MR analysis, and funnel plots were included in the presentation 
of the results.

Results A strong causal association was identified between obesity and accelerated HannumAge, GrimAge, Pheno-
Age and telomere length shrinkage. The causal relationship between WCadjBMI and PhenoAge acceleration (OR: 
2.099, 95%CI: 1.248—3.531, p = 0.005) was the strongest among them. However, only the p-values for the causal 
associations of obesity with GrimAge, PhenoAge, and telomere length met the criteria after correction using the Bon-
ferroni multiple test. In the reverse MR analysis, there were statistically significant causal associations between Hor-
vathAge, PhenoAge and GrimAge and BMI, but these associations exhibited lower effect sizes, as indicated by their 
Odds Ratios (ORs). Notably, sensitivity analysis revealed the robustness of the study results.

†Jixin Li, Wenru Wang and Zhenyu Yang contributed equally to this work.

*Correspondence:
Feng Gao
xinxin11180818@163.com
Jin Zhang
zjmzy2000@hotmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12944-024-02042-y&domain=pdf


Page 2 of 11Li et al. Lipids in Health and Disease           (2024) 23:78 

Conclusions The present findings reveal a causal relationship between obesity and the acceleration of epigenetic 
aging as well as the reduction of telomere length, offering valuable insights for further scientific investigations aimed 
at developing strategies to mitigate the aging process in humans.

Keywords Obesity, Epigenetic age, Telomere, Mendelian randomization, Genome-wide association study

Introduction
The global obesity issue is now an indisputable fact, with 
the prevalence of obesity having doubled in over 73 coun-
tries since 1980 [1]. With the exception of Saharan Africa 
and a few countries with low obesity rates (Sri Lanka, 
Indonesia, etc.), all regions of the world have a severe 
prevalence of obesity [2]. Obesity is a key risk factor for 
type 2 diabetes, cardiovascular disease, non-alcoholic 
fatty liver disease, hypertension, chronic kidney disease, 
polycystic ovary syndrome, depression, sleep apnea, and 
several tumors, significantly elevating patient mortal-
ity [3–5]. It has been estimated that healthcare costs for 
obese individuals are 30% higher than those of normal 
weight [2]. Moreover, the World Obesity Federation, 
along with the American and Canadian Medical Associa-
tions, has officially recognized obesity as a chronic and 
progressive disease. This distinction underscores that 
obesity differs significantly from other risk factors asso-
ciated with diseases [6]. Hence, our continued investiga-
tion into the epidemiology of obesity aims to elucidate 
the connection between obesity and various comorbidi-
ties. This endeavor holds the potential to offer insights 
for the prevention and treatment of both obesity and its 
associated conditions.

With the development of epigenetics, many stud-
ies have reported that obesity is inextricably linked to 
accelerated epigenetic age [7–9]. Moreover, epigenetic 
age acceleration has been associated with various meta-
bolic diseases [10], cardiovascular diseases [11, 12]. 
cancers [10, 13] and other adverse outcomes [14]. As is 
widely recognized, chronological age, measured in terms 
of time, does not precisely capture the actual aging sta-
tus of the human body, including its tissues and organs. 
Individual aging is influenced by a complex interplay of 
confounding and genetic factors [15]. Consequently, 
there has been rapid development in the field of biologi-
cal age measurement methods, such as the epigenetic 
clock and telomere depletion, which aim to provide a 
more accurate assessment of an individual’s aging process 
[16, 17]. The epigenetic clock is an accurate marker that 
responds to aging obtained by measuring DNA methyla-
tion (DNAm) at Cytosine-phosphate-guanine (CpG) loci 
in different groups [18]. The first generation of epigenetic 
aging clocks include HannumAge [19] and HorvathAge 
[20]. HannumAge was obtained by training 71 CpGs 
loci in blood, while HorvathAge was obtained through 

training on 353 CpGs age-related loci found in human 
cell and tissue species. The second generation of epige-
netic aging clocks include PhenoAge [10] and GrimAge 
[21]. PhenoAge is based on data from 513 CpGs that are 
associated with mortality risk, along with nine clinical 
biomarkers, including parameters like white serum glu-
cose, C-reactive protein, mean corpuscular volume, albu-
min, creatinine, and others. On the other hand, GrimAge 
is derived from 1030 CpGs associated with the smoking 
factor and incorporates data from seven plasma pro-
teins, such as adrenomedullin and growth differentiation 
factor 15, as key components. Hence, variations in the 
prominence of the four epigenetic age metrics stem from 
disparities in their training methodologies [22]: Nota-
bly, HorvathAge stands out as the initial age estimation 
tool with broad applicability across various tissues and 
organs. In contrast, HannumAge exhibits enhanced accu-
racy in predicting age when applied to adult blood sam-
ples. The limited correlation between these two primary 
genetic age proxies concerning clinical characteristics 
such as lipids, blood pressure, and glucose is compen-
sated for by the utilization of the second epigenetic aging 
clocks markers. Additionally, PhenoAge excels in predict-
ing mortality over extended periods (10–20 years), while 
GrimAge demonstrates a distinct advantage in leverag-
ing lifestyle indicators for age prediction. Telomeres are 
located at the ends of chromosomes and serve to prevent 
chromosome degradation [23]. Telomere length shortens 
with cell division, thereby correlating with cellular senes-
cence. Studies have demonstrated [24, 25] that telomere 
length is strongly associated with cardiovascular disease, 
cancer and the upper limit of the human life span.

At present, there are numerous studies on the cor-
relation of obesity with biological age and telomeres. 
Kresovich et  al. [26] discovered that body mass index 
(BMI) and waist circumference (WC) were signifi-
cantly associated with high values of four epigenetic 
clocks through a cross-sectional analysis of 2758 
women. However, Foster et al. [27] in a cross-sectional 
study involving a sample of 290 cases, reported find-
ings that did not align with the results of Kresovich 
et  al. [26]. Foster’s study found no significant associa-
tions between BMI and WC with higher HannumAge 
in women. Additionally, neither BMI nor WC was 
found to be associated with GrimAge in their research. 
This limitation might be attributed to the constraints 
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of their study; Foster et  al.’s research suffered from 
a small sample size and was susceptible to inherent 
biases. Furthermore, the aforementioned studies have 
several limitations in that they primarily assessed cor-
relations but could not establish causation. Addition-
ally, they may not have completely controlled for the 
influence of confounding factors. Hence, the observed 
disparity in their outcomes could be attributed to the 
aforementioned factors. Loh et  al. [28] found a sig-
nificant negative correlation between BMI and tel-
omere length through Mendelian randomization (MR) 
analysis; however, when it came to waist-to-hip ratio 
(WHR), the causal association with telomere length 
was not statistically significant. Notably, there existed 
a failure to investigate the inverse relationship in that 
study, with WC and other biological age indicators not 
being taken into account. A unidirectional Mendelian 
randomization analysis of BMI and WC with GrimAge 
and PhenoAge by Kong et al. [29] confirmed a positive 
facilitating effect, but the reverse relationship has not 
been explored and the inclusion of biological markers 
of age is incomplete. Investigating the inherent con-
nection between obesity and biological age markers is 
instrumental in elucidating the mechanisms through 
which obesity contributes to the development of other 
diseases. For instance, obesity has been shown to influ-
ence the methylation of genes involved in lipid metabo-
lism, such as ABCG1 and NOD2 [30]. This knowledge 
can provide insights into the prevention and manage-
ment of conditions like dyslipidemia. Thus, addressing 
the academic gap of standardizing and comprehen-
sively measuring the causal association between obesity 
and biological age is currently relevant, yet it lacks sys-
tematic research.

MR is an epidemiologic and genetic research meth-
odology that uses instrumental variables (IVs) based on 
genetic variation to explore causal associations between 
exposures and outcomes [31]. According to Mendel’s 
second law, alleles are randomly assigned during gam-
ete formation, thus the results of MR studies are not 
affected by confounding factors [32] and are of high 
quality. Based on the described situation in the previous 
section, a full two-way Mendelian randomization study 
was conducted. The aim was to thoroughly investigate 
the causal associations of both obesity and abdominal 
obesity with epigenetic age and telomere length. The aim 
was to resolve the previously mentioned points of con-
tradiction in previous studies between obesity and bio-
logical age and to fill in the gaps in these studies. Such an 
approach provides a robust framework for understand-
ing the intricate relationships between these variables 
and shedding light on their potential causal links. Flow-
chart of this study (Fig. 1).

Materials and Methods
Reporting guidelines
The present study strictly adheres to the STROBE-MR 
guidelines [33].

Research design
In the present study, obesity was used as the "expo-
sure" variable, including BMI, WC adjusted for BMI 
(WCadjBMI), and WHR adjusted for BMI (WHRad-
jBMI). Then, epigenetic age (including HannumAge, 
HorvathAge, GrimAge, and PhenoAge) and telomere 
length were adopted as “outcome” variables. The IVs 
were screened for MR analysis, the consistency of the 
study was assessed using Cochran Q, and the reliability 
of the results was verified by means of sensitivity analy-
sis through horizontal multiplicity analysis and "leave-
one-out" analysis. Additionally, a reverse MR analysis 
was performed using epigenetic age (HannumAge, Hor-
vathAge, GrimAge, PhenoAge) and telomere length as 
"exposure" variables and BMI, WC, and WHR as "out-
come" variables to determine the inverse relationship. 
MR research needs to fulfill three core assumptions: (1) 
IV must be highly correlated with exposure; (2) IV 
should be independent of any confounding factors 
related to exposure and outcome; and (3) IV can only 
affect results through exposure. In the present study, 
a two-way Mendelian randomization study was con-
ducted to assess the causal association of obesity with 
epigenetic age and telomeres.

Data sources
Three phenotypes of obesity were used in the present 
study, with IVs of BMI from a meta-analysis of 681,275 
individuals of European ancestry by Genetic Investiga-
tion of Anthropometric Traits (GIANT) [34]. The case 
data came primarily from two consortia: UK Biobank and 
GIANT consortium. IVs for both WCadjBMI and WHR-
adjBMI were derived from a meta-analysis of 224,459 
individuals of European ancestry from the GIANT Con-
sortium. A recent meta-analysis, involving 28 cohorts 
and a total of 34,710 individuals of European descent, 
successfully identified 137 loci associated with DNA 
methylation biomarkers of aging. Through the study, 
instrumental variables regarding epigenetic age could be 
obtained (HannumAge, HorvathAge, GrimAge, and Phe-
noAge). Pooled telomere length data were obtained from 
the largest Genome-wide association study (GWAS) to 
date containing 472,174 individuals of European ances-
try from UK Biobank [35]. In the aforementioned study, 
although there was a partial sample overlap between the 
GWAS of BMI and all the GWAS of telomeres, the extent 
of overlap was negligible. This is attributed to the fact that 
the GWAS sample for telomeres consisted of participants 
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Fig. 1 Idea map for the design of this study
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aged 45–69 years recruited from 2006–2010. In contrast, 
the GWAS data for BMI only included a partial sam-
ple from the UK Biobank, comprising participants aged 
40–69 years and recruited from the establishment of the 
UK Biobank until the present day. Additionally, a metic-
ulous screening process for weakly instrumented vari-
ables was implemented to exclude any potential overlap, 
confirming its negligible impact [34, 35]. Furthermore, 
no sample overlap occurred in other datasets. (Table 1). 
All of the aforementioned data have been widely used in 
previous MR studies [36–40] and have a high degree of 
reliability.

Screening of instrumental variables
To screen qualified single-nucleotide polymorphisms 
(SNPs), a series of parameter settings were set. Since the 
SNPs for MR studies must be closely related to the expo-
sure, the present study was screened with p < 5 ×  10–8 as 
the threshold, we chose not to use the SNP proxy and 
set r2 < 0.001 and kiobase pair (kb) to 10,000, thereby 
preventing the effect of linkage disequilibrium (LD). 
Furthermore, we meticulously examined each SNP in 
the PhenoScanner database, specifically targeting the 
elimination of potential confounding factors like gen-
der, smoking, alcohol consumption, and physical activity 
(p < 1 ×  10–5). This thorough screening aimed to minimize 
bias, ensuring the robustness and stability of our results 
[41]. At the same time, to prevent the weak instrumental 
variables from biasing the outcome, the completed SNPs 
were screened based on F-statistic assessment. The for-
mula is as follows [42]:

F =

R2(n− 1− k)

1− R2 k

R
2
=

2×MAF(1−MAF)× β2

SE
2
× n

where MAF = minor allele frequency; β = effect size; 
SE = standard error; n = sample size; and k = number 
of instrumental variables. Screening was performed 
using F > 10 as a threshold [43]. The exposed SNPs for 
which the screening was completed were matched with 
the results. If a palindromic SNP was generated, it was 
excluded from consideration, resulting in the selection of 
the final instrumental variables.

Statistical analysis
Two-way Mendelian randomization analysis was per-
formed using the TwoSampleMR package of R software 
(version: 4.2.3). To determine the causal association 
of obesity with epigenetic age and telomeres, IVW, 
Weighted median, MR Egger, Weighted mode and Sim-
ple mode methods were used. IVW is the predominant 
method of MR analysis, which assumes that each SNP 
is valid and allows for a reliable assessment of the causal 
effect of exposure on outcomes [44]. MR Egger regression 
analysis is a valuable method for making causal infer-
ences, particularly when dealing with potential pleiotropy 
or when a large number of instrumental variables may 
not be entirely valid [45]. The weighted median approach 
is another useful MR analysis technique, especially when 
you assume that at least 50% of the instrumental varia-
bles are valid [46]. Additionally, the weighted mode and 
simple mode methods offer more relaxed assumptions 
but may have lower testing efficacy compared to the pre-
vious three methods [44]. These methods can serve as 
supplementary tools for MR analysis, providing a broader 
perspective on causal relationships. A p-value less than 
0.05 indicates statistical significance. To address the issue 
of multiple testing, we applied the Bonferroni correction, 
resulting in more stringent p-values. Specifically, p-val-
ues below 1.67 ×  10–3 (calculated as 0.05 divided by 15, 
then by 2, where 2 represents two-way MR analysis) are 
considered compelling evidence of robust causality.

Table 1 Data description of obesity, epigenetic age and telomere length

Type Phenotype Sample source Population SNPs Simple size PubMed ID

Obesity BMI GIANT Europeans 2336260 681275 30124842

WCadjBMI GIANT Europeans 2566630 224459 25673412

WHRadjBMI GIANT Europeans 2562516 224459 25673412

Epigenetic age HannumAge Centre for Cognitive Ageing 
and Cognitive Epidemiology

Europeans 7565045 34710 34187551

HorvathAge Europeans 7567532 34710 34187551

PhenoAge Europeans 7567585 34710 34187551

GrimAge Europeans 7567701 34710 34187551

Telomere Telomere UK Biobank Europeans 20134421 472174 37117760



Page 6 of 11Li et al. Lipids in Health and Disease           (2024) 23:78 

Sensitivity analysis
To ensure the quality of the results of the present study, 
several heterogeneity analyses were performed using 
the MR-PRESSO software package: (1) The heterogene-
ity of SNPs was assessed using the Cochran Q test. (2) 
The presence of pleiotropy of SNPs was detected using 
the MR-Egger intercept test. (3) Mendelian randomiza-
tion pleiotropy residual sum and outlier (MR-PRESSO) 
was used to test whether there were significant outli-
ers in the study results, and if outliers were detected, 
they were removed, and the MR analysis was rerun. (4) 
Leave-one-out sensitivity test was conducted to observe 
whether there were significant changes after removing 
each SNP. (5) Additionally, we employed the MR-Steiger 
directionality test to evaluate the potential causal rela-
tionship between the assumed exposure and anticipated 
outcomes.

Results
Instrumental variables
In the present study, sufficient obesity-wide loci were 
screened for MR analysis (BMI IVs = 490, interval of F-sta-
tistic = 28.62—1426.17; WCadjBMI IVs = 45, interval of 
F-statistic = 29.75—448.44; WHRadjBMI IVs = 31, interval 
of F-statistic = 29.22—169.79) (Supplementary Table  1). 
Additionally, sufficient epigenetic age and telomere-wide 
loci were screened for reverse MR analysis (HannumAge 
IVs = 9, interval of F-statistic = 30.82—98.90; HorvathAge 
IVs = 24, interval of F-statistic = 30.82—98.90; GrimAge 
IVs = 4, interval of F-statistic = 31.08—239.74; PhenoAge 
IVs = 11, interval of F-statistic = 30.77—89.39; Telomere 
IVs = 4, interval of F-statistic = 29.86—1628.82) (Supple-
mentary Table  2). The F-statistic for each SNP was > 10, 
suggesting a low likelihood of the presence of weak instru-
mental variables, and that these IVs could make good 
inferences about the causal relationship between exposure 
and outcome variables. In this bidirectional MR analysis, 

it was observed that a small number of palindromic SNPs 
and outlier SNPs were present (as indicated in Supple-
mentary Table 3). To maintain the integrity and reliability 
of the final MR analysis, these outliers were excluded from 
the analysis.

Causal effects of obesity on epigenetic age
Using MR analysis, a partial causal relationship between 
obesity and acceleration of epigenetic age was observed. 
IVW modeling shows a significant causal relation-
ship between BMI and acceleration of GrimAge (OR: 
1.849, 95% confidence interval (CI): 1.520—2.248, 
p = 7.49 ×  10–10) and PhenoAge (OR: 1.682, 95%CI: 1.290—
2.192, p = 1.22 ×  10–4). WCadjBMI had a significant 
causal relationship with the acceleration of HannumAge 
(OR:1.554, 95%CI: 1.092—2.211, p = 0.014), HannumAge 
(OR:1.554, 95%CI: 1.092—2.211, p = 0.014) and PhenoAge 
(OR: 2.099, 95%CI: 1.248—3.531, p = 0.005). WHRadjBMI 
had a significant causal relationship with PhenoAge (OR: 
1.974, 95%CI: 1.053—3.702, p = 0.034) acceleration. The 
ORs and 95% CIs obtained from the MR analyses between 
the three obesity exposures included in the present study 
and other epigenetic clocks were not statistically signifi-
cant (Supplementary Table 4). However, following Bonfer-
roni correction for multiple testing, only the MR analysis 
results for BMI with GrimAge and PhenoAge remained 
statistically significant (p < 1.67 ×  10–3), indicating robust 
causal associations (Fig.  2). The study employed scat-
ter plots (Supplementary Figs.  1  and  2) to illustrate the 
causal relationship between obesity and epigenetic age. 
To provide a comprehensive visualization of the findings, 
we included leave-one-out sensitivity analysis plots, for-
est plots for MR analysis of individual SNPs, and funnel 
plots (Supplementary Figs. 3 and 8). Moreover, the Steiger 
test for directionality resulted in TRUE (p < 0.05) in our 
study. The Cochran Q test revealed minimal heterogene-
ity among SNPs when comparing the IVW and MR-Egger 

Fig. 2 MR estimations of the impact of BMI on GrimAge and PhenoAge
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methods (Supplementary Table 5). Additionally, the MR-
Egger intercept indicated the absence of horizontal pleiot-
ropy (Supplementary Table 5).

Causal effects of obesity on telomeres
Using MR analysis, a partial causal relationship between 
obesity and telomere length shortening was observed. 
IVW modeling shows a significant causal relationship 
between BMI and telomere length shortening (OR: 0.960, 
95%CI: 0.946—0.975, p < 0.001). WCadjBMI was also sig-
nificantly and causally associated with telomere length 
shortening (OR: 0.965, 95%CI: 0.936—0.995, p = 0.021). 
The causal relationship between WHRadjBMI and the 
shortening of telomere length (OR: 0.978, 95%CI: 0.930—
1.029, p = 0.397) was not statistically significant but the 
direction still showed a negative correlation (Supplemen-
tary Table  4). However, following Bonferroni correction 
for multiple testing, only the MR analysis results for BMI 
compared to telomere length remained statistically sig-
nificant (p < 1.67 ×  10–3), indicating a robust causal asso-
ciation (Fig.  3). Scatter plots were used to visualize the 
causal relationship between obesity and telomere length 
(Supplementary Fig.  9). For a comprehensive visualiza-
tion of the results, the leave-one-out sensitivity analysis 
plots were supplemented, as well as the forest plots for 
MR analysis of individual SNPs and the funnel plots (Sup-
plementary Figs.  10  and  12). Moreover, the Steiger test 
for directionality resulted in TRUE (p < 0.05) in our study. 
The Cochran Q test results show some heterogeneity 

between the SNPs from the IVW method and the MR-
Egger method (Supplementary Table  6). However, the 
MR-Egger intercept shows no horizontal pleiotropy (Sup-
plementary Table 6).

Causal relationship between epigenetic age and obesity 
(reverse MR analysis)
Using inverse MR analysis, only a slight causal relation-
ship between epigenetic age and obesity was observed. 
The IVW model shows a statistically significant differ-
ence in the causal relationship between HorvathAge 
and BMI (OR: 1.012, 95%CI: 1.004—1.019, p = 0.002). 
The causal relationship between GrimAge and BMI 
(OR: 0.969, 95%CI: 0.958—0.980, p < 0.001) was sta-
tistically significant, as was that between PhenoAge 
and BMI (OR: 1.007, 95%CI: 1.001—1.014, p = 0.027). 
The results of the reverse MR analysis between the 
other epigenetic clocks and the three obesity indica-
tors included in the present study were not statisti-
cally significant (Supplementary Table  4). However, 
following Bonferroni correction for multiple testing, 
only the MR analyses of GrimAge compared to BMI 
exhibited statistical significance (p < 1.67 ×  10–3) after 
the correction, indicating a robust causal association 
(Fig. 4). The aim was to establish a causal relationship 
between epigenetic age and obesity through the utili-
zation of scatter plots for visualization (Supplementary 
Fig. 13). To provide a comprehensive representation of 
the findings, additional visual aids were included, such 

Fig. 3 MR estimations of the impact of Obesity on Telomere

Fig. 4 MR estimations of the impact of GrimAge on Obesity
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as leave-one-out sensitivity analysis plots, forest plots 
for MR) analysis of individual SNPs and funnel plots 
(Supplementary Figs. 14 and 16). Moreover, the Steiger 
test for directionality resulted in TRUE (p < 0.05) in 
our study. The results of the Cochran Q test indicate 
the absence of significant heterogeneity between SNPs 
derived from both the IVW and MR-Egger methods 
(Supplementary Table 7). Further, the MR-Egger inter-
cept demonstrated the absence of horizontal pleiot-
ropy (Supplementary Table 7).

Causal relationship between telomeres and obesity 
(reverse MR analysis)
Through inverse MR analysis, an observation was made 
that the causal relationship between telomeres and obe-
sity was not statistically significant (Supplementary 
Table  4). None of the individual results meet the crite-
ria for statistical significance after applying Bonferroni’s 
multiple test correction. Moreover, the Steiger test for 
directionality resulted in TRUE (p < 0.05) in our study. 
The results of the Cochran Q test reveal the absence of 
significant heterogeneity between SNPs derived from 
both the IVW and MR-Egger methods (Supplementary 
Table  8). Additionally, the MR-Egger intercept demon-
strated the absence of horizontal pleiotropy (Supplemen-
tary Table 8).

Discussion
Aging is an unavoidable biological process that is 
accompanied by a decline in organ function and an 
increase in environmental susceptibility. As such, 
research on anti-aging mechanisms has been a key 
area of interest in the field of medicine [47]. Telomere 
length and epigenetic age can be used as indicators of 
aging. A telomere is a piece of DNA and protein com-
plex located at the end of a chromosome that func-
tions to protect DNA from damage after replication 
[48]. The protective caps at the end of chromosomes, 
naturally shorten with each cell division throughout 
an individual’s life. This process is a hallmark of cel-
lular aging and is linked to various health conditions, 
including cancer. Telomere length serves as a valu-
able indicator of an individual’s aging process and 
overall health [49, 50]. Epigenetic age is a class of bio-
logical age metrics distinct from telomeres, which are 
derived based on DNAm and are extensively employed 
to measure the level of cellular and tissue senescence 
in organisms [18]. The acceleration of epigenetic 
age is frequently employed to characterize individu-
als whose epigenetic age surpasses their chronologi-
cal age, indicating a diminished state of health in the 
individual [51]. The total number of obese patients 
is increasing globally every year [1]. The disorders of 

lipid metabolism induced by obesity can contribute to 
cognitive impairment in humans through various lipid 
metabolic pathways, including cholesterol, triglycer-
ides, apolipoprotein, lipoprotein(a), and low-density 
lipoprotein cholesterol [52]. Exploring the causal con-
nection between obesity and the acceleration of epi-
genetic aging, along with the reduction in telomere 
length, represents a pioneering and insightful research 
avenue that may yield strategies for mitigating the 
aging process in humans.

To the present knowledge, the present study is the first 
comprehensive bi-directional causal study of obesity 
with epigenetic age and telomeres. Our study addresses 
the contradictions observed in previous correlation 
studies between obesity and biological age and effec-
tively addresses the shortcomings of prior Mendelian 
randomization studies in this domain. Findings were 
made that BMI had a significant positive causal relation-
ship with acceleration of GrimAge and PhenoAge, but 
not with acceleration of HannumAge and HorvathAge. 
WCadjBMI had a significant positive causal relationship 
with acceleration of HannumAge, GrimAge and Pheno-
Age. WHRadjBMI exhibited a significant association 
solely with the acceleration of PhenoAge. Overall, all 
three obesity indicators included in the study were sig-
nificantly associated with the acceleration of PhenoAge; 
however, none were associated with the acceleration of 
HorvathAge. Moreover, the causal association between 
WCadjBMI and PhenoAge acceleration was the strong-
est among these causal associations (OR: 2.099, 95%CI: 
1.248—3.531, p = 0.005). Such findings could be attrib-
uted to the fact that the PhenoAge clock is projected to 
include C-reactive protein, Glucose, White blood cell 
count and other indicators that are susceptible to life-
style behaviors, which have been shown to be strongly 
associated with obesity and body composition [53–55]. 
The estimation of the GrimAge clock incorporates the 
measurement of plasma leptin [21], which is mostly 
produced in white adipose tissue, and its secretion is 
significantly and positively correlated with adipose tis-
sue and adipocyte volume [56]. Estimates from the Han-
numAge clock incorporate the proportions of cytotoxic 
T cells, helper T, natural killer, B cells, and granulocytes 
in whole blood samples, and the state of obesity can 
have an impact on the number and activation of these 
immune cells [57]. The three obesity indicators exam-
ined did not demonstrate a statistically significant accel-
eration effect on HorvathAge. This aligns with findings 
from a cross-sectional study conducted in Taiwan with a 
sample size of 2474, which highlighted the lack of signif-
icant correlation between obesity and HorvathAge [9]. 
The weaker predictive performance of HorvathAge in 
terms of lipids, glucose, and other blood sample metrics 
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compared to other epigenetic age tools [22] might be 
attributed to its inadequate training on relevant blood 
metrics. However, a positive trend was observed in the 
relationship. Regarding the association between obe-
sity and telomere length, all three indicators consid-
ered in the study displayed a negative correlation with 
telomere length, but only BMI and WCadjBMI exhib-
ited a statistically significant association with shorter 
telomere length. Such results are generally consistent 
with previous observational studies and meta-analyses 
[58–60]. This may be due to oxidative stress in adipose 
tissue of obese individuals, and excessive oxidative 
stress potentially leading to accelerated shortening of 
telomeres [43]. Moreover, obesity is frequently charac-
terized as a systemic, chronic, low-grade inflammatory 
condition, leading to an upregulation in the expression 
of pro-inflammatory cytokines like interleukin-1 and 
tumor necrosis factor-α in the adipose tissue of obese 
individuals [61]. This phenomenon may be attributed, in 
part, to the hyperpolarization of M1-type macrophages, 
among other factors [62, 63]. Such accumulation of 
inflammation promotes telomere shortening [60]. 
Additionally, the causal associations between BMI and 
GrimAge, PhenoAge, and telomere length were consist-
ent with p-values corrected by the Bonferroni multiple 
test, demonstrating increased robustness compared to 
other results. This robustness may stem from GrimAge 
and PhenoAge’s stronger correlation with clinical lipid 
profiles, blood pressure, and glucose indices compared 
to the primary representative epigenetic age tool [22]. 
This underscores the significance of BMI as an obesity 
measure, potentially attributed to its broader cover-
age of various obesity types compared to WCadjBMI 
and WHRadjBMI. BMI stands out as a straightforward 
and practical tool for obesity assessment. However, it is 
acknowledged that BMI might be somewhat biased as 
it fails to differentiate between central and peripheral 
obesity, with the latter demonstrating protective effects 
against hypertension, type 2 diabetes mellitus, dyslipi-
demia, and cardiovascular diseases through subcutane-
ous fat accumulation in the legs and arms [64–67].

In the reverse MR analysis, only HorvathAge, Grim-
Age and PhenoAge were found to have significant causal 
relationships with BMI, but they were in different direc-
tions. Acceleration of HorvathAge and PhenoAge was 
causally associated with decreased BMI, and accelera-
tion of GrimAge was causally associated with increased 
BMI. Although there was statistical significance in the 
results, the effects of these 3 age clocks on BMI were 
small, and the relationships were trivial compared with 
their positive causal associations. Such findings could 
likely be attributed to confounding factors that com-
plicate the associations between these three epigenetic 

clocks and BMI, even when rigorous screening condi-
tions are applied, such as economic status. Additionally, 
the observed outcomes may be influenced by limitations 
in statistical power. In MR analyses assessing the causal 
link between telomeres and obesity, it was determined 
that telomere shortening does not induce changes in the 
obesity phenotype.

In the present study, the bidirectional causal associa-
tions of obesity with epigenetic age and telomeres were 
comprehensively analyzed for the first time, and the use 
of MR analysis was beneficial in mitigating the effects of 
confounding factors. In addition, an adequate sensitivity 
analysis was conducted to support the quality of the find-
ings. The present study validates the findings from prior 
observational research and offers a robust evaluation 
of contradictory results from previous cross-sectional 
investigations. Furthermore, this study serves as a valu-
able complement to MR analyses conducted in the same 
field. These strengths provide support for the robustness 
and reliability of the present results and suggest that a 
causal relationship was established between obesity, epi-
genetic age and telomeres.

There present study had several unavoidable limita-
tions. Firstly, the data for the present study came from a 
European population. While achieving individual homo-
geneity can effectively mitigate bias arising from group 
differences and yield dependable results for MR analysis, 
it raises controversy regarding the generalizability of our 
findings to ethnic groups beyond Europe. Hence, future 
studies should focus on targeted homogeneity within 
other human races to validate the applicability of our 
study’s results. The study focused exclusively on diagnos-
tic indicators of obesity and abdominal obesity, without 
considering more detailed measures of body composi-
tion, such as the percentage of body fat. As previously 
mentioned, various fat deposits in distinct regions may 
exert diverse impacts on health and aging. Futhermore, 
a more comprehensive investigation in the future could 
incorporate these additional aspects. As the field of epi-
genetics continues to advance, with the development of 
new aging markers and improvements in relevant GWAS 
data, there is potential to broaden the scope of research 
to explore bidirectional causal relationships between 
these markers and obesity.

Conclusion
In conclusion, the present study supports a strong causal 
association between obesity, accelerated epigenetic aging 
and telomere length shrinkage. The causal relationship 
between WCadjBMI and PhenoAge acceleration was 
the strongest among them. However, none of the three 
obesity indicators (BMI, WCadjBMI and WHRadjBMI) 
included in the study had a significant causal relationship 
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with acceleration of HorvathAge. In the reverse MR 
analysis, a statistically significant causal association was 
identified between HorvathAge, PhenoAge, GrimAge, 
and BMI, but the strength of this causal association, as 
indicated by their ORs, was relatively low. Nevertheless, 
the present study unveils the causal link between obesity 
and biological age markers, offering valuable insights for 
scientific research aimed at delaying the aging process in 
humans.
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