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Abstract 

Cancer cells need constant supplies of lipids to survive and grow. Lipid dependence has been observed in various 
types of cancer, including high‑grade serous ovarian carcinomas (HGSOC), which is a lethal form of gynecological 
malignancy. ANGPTL3, PCSK9, and Apo CIII are pivotal lipid‑modulating factors, and therapeutic antibodies have been 
developed against each one (Evinacumab, Evolocumab and Volanesorsen, respectively). The roles ‑if any‑ of ANGPTL3, 
PCSK9, and Apo CIII in HGSOC are unclear. Moreover, levels of these lipid‑modulating factors have never been 
reported before in HGSOC. In this study, circulating levels of ANGPTL3, PCSK9, and Apo CIII, along with lipid profiles, 
are examined to verify whether one or many of these lipid‑regulating factors are associated with HGSOC.

Methods ELISA kits were used to measure ANGPTL3, PCSK9 and Apo CIII levels in plasma samples from 31 women 
with HGSOC and 40 women with benign ovarian lesions (BOL) before treatment and surgery. A Roche Modular ana‑
lytical platform measured lipid panels, Apo B and Lp(a) levels.

Results ANGPTL3 levels were higher in women with HGSOC (84 ng/mL, SD: 29 ng/mL, n = 31) than in women 
with BOL (67 ng/mL, SD: 31 ng/mL, n = 40; HGSOC vs. BOL P = 0.019). Associations between the lipid panel 
and ANGPTL3, and the inverse relationship between HDL‑cholesterol and triglycerides, were present in women 
with BOL but not with HGSOC. PCSK9 and Apo CIII were not associated with HGSOC.

Conclusions In this cohort of 71 women, ANGPTL3 levels were increased in HGSOC patients. The presence of HGSOC 
disrupted the classic inverse relationship between HDL and triglycerides, as well as the association between the lipid 
panel and ANGPTL3. These associations were only maintained in cancer‑free women. Given the availability of Evi‑
nacumab, a therapeutic antibody against ANGPTL3, the current finding prompts an assessment of whether ANGPTL3 
inhibition has therapeutic potential in HGSOC.
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Background
Ovarian cancer (OC) is an aggressive form of cancer, with 
fewer than half of women who will survive beyond the 
5 years following their diagnosis [1]. There is an urgent 
need for new approaches to treat women diagnosed with 
OC. In addition to the actual standard of care combining 
surgery and chemotherapy, cholesterol-lowering drugs 
appear as promising add-on therapeutics to impede ovar-
ian cancer progression [2–4].

Statins are inhibitors of hydroxymethylglutaryl-coen-
zyme A reductase, the rate-limiting step in cholesterol 
de novo synthesis, and have been extensively investi-
gated for their protective role against cancers [5–7]. Sev-
eral studies indicate decreased OC-related mortality in 
women using statins, especially lipophilic ones [8–11]. 
Due to a lack of prospective randomized trials, no con-
sensus has been reached on the benefits of using statins 
as an adjuvant treatment [12–16].

The effects of non-statin cholesterol-lowering drugs 
on OC progression are scarcely documented. Apoli-
poprotein C-III (Apo CIII), angiopoietin protein-like 3 
(ANGPTL3), proprotein convertase subtilisin/kexin type 
9 (PCSK9) modify circulating lipid levels (Low-density 
Lipoprotein or LDL, and high-density lipoproteins or 
HDL levels) and  thus modulate lipid supplies to extra-
hepatic tissues, including cancer cells. Lipoprotein (a), or 
Lp(a), is an LDL particle with an Apo (a) and is gaining 
traction in the cardiovascular field, while little is known 
about its role in cancers. These hepatic-derived factors 
are the targets of a new generation of cholesterol-lower-
ing drugs. Volanesorsen is an antisense oligonucleotide 
which targets Apo CIII and was developed in hyperchy-
lomicronemia [17]. Evinacumab is a monoclonal antibody 
(mab) that inhibits ANGPTL3 and is approved for treat-
ing homozygous hypercholesterolemia [18]. Evolocumab, 
also a mab, blocks PCSK9 and is combined with a statin 
to reach Apo B targets (< 0,70 g/L) in patients with car-
diovascular diseases [19].

The present study aims to measure and report circulat-
ing levels of ANGPTL3, PCSK9 and Apo CIII in women 
with ovarian carcinoma (OC); all three lipid-modulating 
factors are the target of clinically available therapeutical 
monoclonal antibodies or antisense oligonucleotide ther-
apy. The central hypothesis of this article is that at least 
one of these factors will be modified in OC to meet the 
increased cholesterol requirements of OC.

The present study reports measurements of circulat-
ing levels of Lp(a), Apo CIII, ANGPTL3, and PCSK9 in 
women diagnosed with either an epithelial high-grade 
serous ovarian carcinoma (HGSOC) or a benign ovar-
ian lesion (BOL). Additionally, correlations linking these 
lipid-related factors to the lipid profile and ovarian tumor 
biomarkers CA125 and HE4 are provided. Furthermore, 

specific patterns related to women with HGSOC are out-
lined. This study is the first to simultaneously measure all 
the parameters described above and compare their asso-
ciations across cancer-free and cancer patients from a 
same cohort.

Patients and methods
Patients
Participants included in the present study were sampled 
prior to treatment, of female biological sex, aged between 
39 and 83 years old (y.o.), and had not yet undergone 
surgical debulking. Forty participants were diagnosed 
with a BOL (benign ovarian cyst-like lesion: serous para-
tubular adenofibromas or cystadenofibromas). Thirty-
one participants had received an epithelial high-grade 
serous ovarian carcinoma (HGSOC) diagnosis. All diag-
noses were performed at the Pathology Department of 
the CHU de Québec-Université Laval. Ovarian cancer 
grading was determined using biomarker levels and his-
tological analyses of biopsies. Staging of ovarian tumors 
was established according to the Fédération Internation-
ale de Gynécologie et d’Obstétrique (FIGO) system. Mean 
age and median age were similar between the two groups 
(Table 1).

Blood samples
Plasma specimens from 71 women newly diagnosed 
with HGSOC or BOL were collected between 2017 and 
2020 and were registered in the biobank of The Cancer 
Research Network (RRCancer, Montréal, QC). Plasma 
samples collected in EDTA vacutainers were centrifuged, 
aliquoted into 500 μL fractions and then stored at − 80 °C. 
Aliquots were thawed only once, on the day of measure-
ments. All clinical samples were anonymized before anal-
ysis to protect patients’ privacy. All methods described 
below were carried out in accordance with relevant ethi-
cal guidelines and regulations.

Lipid profile
Three-hundred μL of each sample were sent to the Core 
laboratory of the Hôpital de l’Enfant-Jésus (Quebec City, 
Canada) for measurements of apolipoprotein B (Apo B, in 
g/L), Lp(a) (nmol/L), total cholesterol (TC, in mmol/L), 
HDL-cholesterol (HDL, in mmol/L) and triglycerides 
(TG, in mmol/L) on a Cobas 8000 Modular analyti-
cal platform (Roche Diagnostics). Lp(a) measurements 
lower than the reportable range (Lp(a) < 10 nmol/L) were 
set to a default value of 3 nmol/L, corresponding to half 
of the lower limit of detection. LDL-cholesterol (LDL) 
was calculated with the Friedewald equation: LDL in 
mmol/L = TC – (TG/ 2.2) – HDL [20]. Non-HDL choles-
terol was calculated by subtracting HDL-cholesterol from 
total cholesterol in mmol/L.
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Table 1 Biological and biochemical characteristics of women diagnosed with benign ovarian lesion (BOL), high‑grade serous ovarian 
carcinoma (HGSOC) and entire cohort (Total)

Women with BOL (n = 40) Women with 
HGSOC (n = 31)

Total P-value (unpaired) P-value (paired)

AGE (years)

 Mean (SD) 63.7 (9.4) 64.8 (9.6) 64.2 (9.5)

 Median [IQR] 64.7 [57.7; 70.9] 64.8 [58.3; 70.7] 64.8 [58.0; 71.0] 0.65 a 0.13 d

POST‑MENOPAUSAL STATUS

 Yes (%) 33 (80.4) 21 (91.3) 54 (76.1)

 No (%) 4 (9.8) 2 (6.7) 6 (8.4) 0.29 b

 Missing (%) 4 (9.8) 7 (23.3) 11 (15.5)

TUMOR STAGE

 I – 3 3

 II – 3 3

 III – 21 21

 IV – 4 4

TUMOR MARKERS

CA125 (U/mL)

 Mean (SD) 21 (12) 422 (1358) 196 (913)

 Median [IQR] 17 [12; 27] 54 [29; 301] 27 [14; 53] 1.4 E-7c**** 5.3 E-6e****
HE4 (pmol/L)

 Mean (SD) 66 (25) 539 (1185) 244 (754)

 Median [IQR] 57 [49, 83] 155 [93; 447] 77 [54; 129] 2.2 E-7c**** 2.0 E-5e****
 Missing 2 (5.0%) 8 (25.8%) 10 (14.1%)

LIPIDS

TG (mmol/L)

 Mean (SD) 1.45 (0.71) 1.46 (0.65) 1.45 (0.68)

 Median [IQR] 1.23 [0.95; 1.74] 1.34 [1.02; 1.63] 1.34 [0.99; 1.70] 0.87 c 0.92 d

Lp(a) (nmol/L)

 Mean (SD) 73.9 (88.0) 74.4 (98.0) 74.1 (91.8)

 Median [IQR] 34.5 [12; 106] 21.0 [7; 134] 28.0 [11; 111] 0.66 c 0.63 d

HDL (mmol/L)

 Mean (SD) 1.55 (0.46) 1.45 (0.33) 1.51 (0.41)

 Median [IQR] 1.48 [1.22; 1.76] 1.49 [1.15; 1.68] 1.49 [1.19; 1.73] 0.26 a 0.24 d

TC (mmol/L)

 Mean (SD) 5.35 (1.09) 5.39 (1.05) 5.37 (1.07)

 Median [IQR] 5.42 [4.41; 6.15] 5.16 [4.44; 6.26] 5.28 [4.43; 6.24] 0.93 c 0.96 d

Apo B (g/L)

 Mean (SD) 1.00 (0.23) 1.03 (0.26) 1.01 (0.24)

 Median [IQR] 0.99 [0.81; 1.16] 0.99 [0.85; 1.17] 0.99 [0.83; 1.16] 0.63 a 0.82 d

Non‑HDL (mmol/L)

 Mean (SD) 3.79 (1.00) 3.94 (1.02) 3.86 (1.01)

 Median [IQR] 3.73 [2.91; 4.56] 3.77 [3.08; 4.76] 3.77 [3.01; 4.70] 0.55 a 0.72 d

LDL (mmol/L)

 Mean (SD) 3.13 (0.98) 3.28 (0.97) 3.20 (0.98)

 Median [IQR] 3.08 [2.38; 3.80] 3.17 [2.39; 3.98] 3.10 [2.38; 3.84] 0.54 a 0.69 d

LIPID‑RELATED FACTORS

Apo CIII (μg/mL)

 Mean (SD) 526 (241) 615 (306) 569 (276)

 Median [IQR] 485 [404; 616] 562 [459; 826] 508 [404; 688] 0.15 c 0.33 d

 Missing 8 (20.0%) 1 (3.2%) 9 (12.7%)

ANGPTL3 (ng/mL)
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PCSK9, ANGPTL3 and Apo CIII
Using commercially available Enzyme-Linked Immuno-
sorbent Assay (ELISA) kits, levels of ANGPTL3 (cat # 
ab254510, Abcam, Cambridge, MA, USA), PCSK9 (cat 
# 443107, Biolegend, San Diego, CA, USA) and Apo CIII 
(cat # ab154131, Abcam, Cambridge, MA, USA) were 
measured in 200 μL aliquots of plasma samples, in com-
pliance with manufacturer’s instructions. All plasma sam-
ples were assayed in duplicate. Intra-assay (mean ± SD) 
& inter-assay coefficients of variation were: 4.0 ± 4.1% & 
17.3% for ANGPTL3, 2.2 ± 1.9% & 15.1% for PCSK9 and 
12.0 ± 10.7% & 23.4% for Apo CIII, respectively.

Tumor markers
Levels of tumor markers were tested at the time of speci-
men collection and were retrieved from the biobank 
database: measurements of Carbohydrate Antigen 125 
(CA125) and Human Epididymis protein 4 (HE4) have 
been described elsewhere [21].

Statistical analysis
The minimal sample size for a statistical power of 80% 
and an alpha error of 0.05 was estimated using G*power 
software version 3.1. Forty women with a BOL and 31 
women with a HGSOC formed the two study groups. 
BOL and HGSOC participants were age-matched 
(maximal difference of ±3 years) prior to paired-group 
analyses to limit the confounding effect of age on both 
cancer outcomes and blood lipid profiles. Two-group 
comparisons involved two-tailed tests admitting a type 
I error α = 0.05, performed using SAS software version 
9.4 and R software version 4.2.0. Correlation coefficients 
between all variables were determined by Spearman’s 
rank order test, computed with the corx package (cour-
tesy of Dr. James Conigrave, https:// github. com/ conig/ 
corx). A small proportion of the analytes (13% for Apo 
CIII and 14% for HE4) were not successfully measured. 
Consequently, the number of subjects may vary depend-
ing on the applied statistical model. A flow chart of the 

analyses performed with adjustment for sparse data is 
provided in supplemental Fig. S1.

Results
Biological characteristics of the cohort
Participants’ age, menopausal status, tumor staging, 
tumor markers levels, lipid panel and lipid-related factors 
levels are listed in Table  1. Mean age was 64.2 ± 9.5 y.o. 
for the entire cohort and did not differ between women 
diagnosed with BOL vs women diagnosed with HGSOC 
(BOL: 63.7 ± 9.4 y.o., HGSOC: 64.8 ± 9.6 y.o., P-value 
BOL vs HGSOC =0.13). The majority of women were in 
postmenopausal status (80.4 and 91.3% for the BOL and 
HGSOC groups respectively). Menopausal statuses dis-
tribution was homogenous between groups (P-value of 
0.29 with Fisher’s Exact Test).

Lipid-related factors and malignancy
Plasma ANGPTL3 levels were higher in women with 
HGSOC compared to women diagnosed with a BOL 
(84 ± 29 ng/mL vs. 67 ± 31 ng/mL, P = 0.019; Table 1 and 
Fig.  1). The observed association remained when com-
paring age-matched BOL and HGSOC women (n = 31 
per group, P = 0.030; Table 1). The presence of cancer did 
not modify Apo CIII and PCSK9 levels (see HGSOC and 
BOL, Table 1 and Fig. 1).

Lipid profile
Lipid profiles (TC or total cholesterol, HDL or High-den-
sity Lipoprotein cholesterol, TG or triglycerides, calcu-
lated LDL, calculated non-HDL, Apo B and Lp(a)) were 
similar between BOL and HGSOC groups (Table  1, all 
P-values > 0.05), with lipid levels comprised within the 
normal range [22]. A tight correlation between variables 
reflecting atherogenic particles (Apo B, non-HDL and 
LDL) was observed regardless of the group (all rho above 
0.80, all P-values < 0.0001, Fig.  2). The classic inverse 
correlation between HDL and TG was seen in BOL 
(rho = − 0.70, P-value < 0.0001, Fig.  2A) and the entire 

Table 1 (continued)

Women with BOL (n = 40) Women with 
HGSOC (n = 31)

Total P-value (unpaired) P-value (paired)

 Mean (SD) 67 (31) 84 (29) 74 (31)

 Median [IQR] 65 [46; 86] 77 [66; 102] 70 [51; 92] 0.019a* 0.030d*
PCSK9 (ng/mL)

 Mean (SD) 108 (32) 103 (38) 106 (35)

 Median [IQR] 104 [87; 118] 97 [79; 113] 103 [82; 117] 0.33 c 0.44 d

TG triglycerides, Lp(a) lipoprotein (a), TC total cholesterol, Apo B apolipoprotein B
a  Student T-test, b Fisher’s Exact Test for count data, c Wilcoxon Mann Whitney U test, d Paired Student T-test, e Paired Wilcoxon signed rank test

Boldface indicates significance with *: P < 0.05, ****: P < 0.000 1

https://github.com/conig/corx
https://github.com/conig/corx
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cohort (rho = − 0.53, P-value < 0.0001, Fig. 2C). However, 
this correlation was not obtained (weak and non-signifi-
cant) in HGSOC (rho = − 0.25, P-value > 0.05, Fig. 2B).

Lipid-related factors and the lipid profile
A significant correlation between ANGPTL3 and several 
lipid parameters (HDL, total cholesterol, non-HDL cho-
lesterol and LDL) was observed in BOL (Fig.  2A: HDL 
rho = 0.42, P-value < 0.01; TC rho = 0.45, P-value < 0.01; 
non-HDL rho = 0.36, P-value < 0.05; LDL rho = 0.40, P-value 
< 0.05) and in the entire cohort (Fig.  2C: HDL rho = 0.29, 
P-value < 0.05; TC rho = 0.37, P-value < 0.01; non-HDL 
and LDL both rho = 0.31, P-value < 0.01). No correlation 
between ANGPTL3 and lipid parameters were obtained 
in the HGSOC group (Fig.  2B). Similar correlations were 
obtained after age adjustment (Supplemental Fig. S2).

Apo CIII or PCSK9 levels were not correlated with 
the lipid profile in either group (Fig.  2). Nevertheless, 
Apo CIII levels correlated with TG levels in BOL and 
the entire cohort (Fig.  2A and C) but not in HGSOC 
(Fig. 2B). A weak correlation between PCSK9 and Lp(a) 
in BOL was also noticed (Fig. 2A).

Ovarian cancer tumor markers
CA125 and HE4 are established tumor markers of 
OCs and, as such, displayed significantly higher lev-
els in HGSOC than in  BOL (Table  1 and Supplemen-
tal Fig. S3). CA125 increased in HGSOC (422 ± 1358 U/
mL, Table  1) vs. BOL (21 ± 12 U/mL, P-value = 1.4 ×  10−7, 
Table  1). Likewise, HE4 levels were higher in HGSOC 
(539 ± 1185 pmol/L, Table  1) vs. BOL (66 ± 25 pmol/L, 
P-value = 2.2 ×  10−7, Table 1). Also expected was the strong 
correlation between CA125 and HE4 in the entire cohort 
and HGSOC (Fig.  2C and B). Malignancy was strongly 

correlated with both CA125 (rho = 0.63, P < 0.0001, 
Fig.  2C) and HE4 (rho = 0.67, P < 0.0001, Fig.  2C) before 
adjusting for age as well as after (Supplemental Fig. S2C).

Discussion
Cholesterol and lipids are essential to ovarian carcinoma
It is increasingly recognized that cholesterol plays a role 
in cancer progression [4]. Lipids are essential to rapidly 
dividing cells, especially tumor cells [12, 23–25]. OCs are 
no exception: they require lipids and cholesterol for their 
growth [12, 23, 24]. Alterations in the various pathways 
(intracellular synthesis vs. dietary vs endogenous path-
ways) through which OCs acquire their lipids still need to 
be clarified [26]. The objective of the present study was to 
measure circulating levels of Lp(a), Apo CIII, ANGPTL3 
and PCSK9 in women diagnosed either with a high-grade 
serous ovarian carcinoma (HGSOC) or a benign ovarian 
lesion (BOL), given the availability of monoclonal anti-
bodies and antisense therapy targeting these lipid-related 
factors.

ANGPTL3 levels increase in HGSOC
This study was conducted to investigate the impact 
of malignant ovarian tumors on lipid-related factors. 
The study found that ANGPTL3, a well-established 
proangiogenic and hyperlipidemic factor, was higher 
in women diagnosed with HGSOC (BOL: 67 ng/mL, 
HGSOC: 84 ng/mL, Table 1). However, this 25% increase 
in ANGPTL3 levels did not result in any change in the 
lipid profile. Presence of HGSOC disrupted the associa-
tion between ANGPTL3 and the lipid profile (see Fig. 2). 
It was observed that the lipid profile was similar between 
women with BOL and HGSOC (Table  1). It is impor-
tant to note that ANGPTL3 origin (liver vs HGSOC) 

Fig. 1 Plasma levels of Lp(a), Apo CIII, ANGPTL3, and PCSK9 in women diagnosed with benign ovarian lesion (BOL) and high‑grade serous ovarian 
carcinoma (HGSOC). Significantly higher levels (P = 0.019) of ANGPTL3 were observed in HGSOC (n = 31) compared to BOL (n = 40) with T‑test. *: 
P < 0.05
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Fig. 2 Pairwise Spearman’s correlation analyses between all variables. Pairwise correlations are presented for (A) benign ovarian lesion (BOL), (B) 
high‑grade serous ovarian carcinoma (HGSOC) and (C) for the entire cohort (overall). In each matrix, correlation coefficients (rho) are displayed 
in the lower half‑panel with color hues indicative of relationship strength (see rho coefficient scale) while significance is indicated in the upper 
half‑panel (ns: non‑significant, *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.000 1)
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cannot be identified through measurements from periph-
eral blood venipunctures. Yet, higher expression of 
ANGPTL3 was reported in biopsy-confirmed HGSOC 
tissues by Siamakpour-Reihani (discussed below), sup-
porting a contribution of an HGSOC-derived ANGPTL3 
secretion in addition to the liver ANGPTL3 secretion.

Lipoproteins and cholesterol levels in HGSOC
Lipids and their metabolic pathways have been linked to 
OCs [2, 27–30]. To establish whether malignant ovarian 
tumor influence circulating lipids in patients, the lipid 
profiles of women with BOL and HGSOC were com-
pared. No significant change in TC, triglycerides, HDL, 
LDL, non-HDL, Apo B nor Lp(a) levels was observed 
between groups. These results concur with a study from 
2007 reporting no difference in TC, LDL or HDL serum 
levels between 30 healthy controls and 32 patients of sim-
ilar age with breast or ovarian cancers [31]. They contrast 
with a recent meta-analysis of 12 different studies report-
ing a decrease in TC and HDL in patients with ovarian 
tumors [32]. This discrepancy may be explained by the 
time separating blood sampling from diagnosis. A recent 
analysis of prospective case-control studies showed a 
possible inverse association between OC risk and TC lev-
els when measured at least 2 years before diagnosis [33]. 
Furthermore, previous experimental and observational 
studies have proposed that levels of oxidized LDL, rather 
than total LDL, tend to show a stronger association with 
tumorigenesis and metastasis in OCs [31, 34, 35]. In the 
present study, oxidized LDL levels were not measured.

Another interesting observation was the lack of cor-
relation between TG and HDL cholesterol levels in 
HGSOC patients (Fig.  2A vs. 2B for correlations; Sup-
plemental Figs. S2A vs S2B for partial correlations with 
age-adjustment). In women without cancer, the expected 
strong and inverse correlation between HDL cholesterol 
and TG was present (rho = − 0.70, P-value < 0.000 1, 
n = 31, Fig. 2A). Meanwhile in women with OCs, no cor-
relation was obtained between HDL cholesterol and TG 
(rho = − 0.25, non-significant P-value, n = 22, Fig.  2B). 
The latter observation goes against the well-established 
pathways linking HDL and TG. Nascent HDL emerge 
from the liver and acquire cholesterol from peripheral 
cells. Cholesteryl ester transfer protein (CETP) thereafter 
exchanges cholesterol esters from HDL to beta-lipopro-
teins for TG. As HDLs are enriched in TG, HDL choles-
terol decreases, which explains the negative correlation 
commonly observed between HDL cholesterol and TG 
[36, 37]. A decoupling of lipoproteins metabolic path-
ways is portrayed by the disappearance of this correlation 
in women with HGSOC, perhaps involving ANGPTL3 or 
CETP.

ANGPTL3 and circulating lipids in HGSOC
ANGTPL3 inhibits both hepatic and extra-hepatic 
lipoprotein lipases. Since lipases are responsible for 
the hydrolysis of triglycerides, levels of triglycerides-
rich lipoproteins such as very-low-density lipoproteins 
(VLDL), intermediate-density lipoproteins (IDL) and 
LDL are increased upon ANGPTL3-mediated lipase 
inhibition [38], contributing to higher circulating levels 
of lipids.

Changes in ANGPTL3 in OC were previously reported 
by Siamakpour-Reihani et al [39]: RNA microarray anal-
yses performed on ovarian tissue specimens from 51 
chemotherapy-naïve patients with advanced HGSOC 
revealed that higher expression of ANGPTL3 was asso-
ciated with shorter survival. The results of higher circu-
lating levels of ANGPTL3 in HGSOC compared to BOL 
(Table 1, Fig. 1) are, therefore, a finding that is in line with 
results described by Siamakpour-Reihani et al., but only 
to a certain extent, as survival data for HGSOC patients 
recruited between 2017 and 2020 are currently unavail-
able. Elevated levels of ANGPTL3 were not coupled to 
an elevation of HDL levels in HGSOC (Fig. 2B and Sup-
plemental Fig. S2B). This observation is unexpected in 
light of known pathways governing the relationships 
between ANGPTL3, HDL and TG [40, 41]. Correlations 
between ANGPTL3 and other components of the lipid 
panel, namely TC and non-HDL (Fig.  2A, rho = 0.45, 
P-value < 0.01 and rho =0.36, P-value < 0.05 respectively), 
also weakened in the HGSOC group (Fig. 2B, rho = 0.32 
and rho = 0.25 respectively, all P-values non-significant). 
These observations evoke a rupture in the interrelation-
ship between ANGPTL3 and cholesterolemia in HGSOC.

Possible implications of ANGPTL3 increase in HGSOC
Lipid profile similarity between BOL and HGSOC 
(Table 1), despite increased ANGPTL3 levels in HGSOC 
(Fig.  1), was compatible with the absence of correlation 
between lipids and ANGPTL3 in HGSOC (Fig. 2B). This 
implies that presence of OC disrupts the relationship 
between ANGPTL3 and lipid levels in this cohort. One 
explanation could be that circulating lipids are taken up 
by tumor cells, inducing an upregulation of the hepatic 
secretion of ANGPTL3 to maintain a preset cholester-
olemia. Alternatively, increased levels of ANGPTL3 in 
HGSOC could reflect local production by the tumor itself 
[39]. In such context, ANGPTL3 may be secreted in the 
tumor microenvironment to mediate pro-angiogenic and 
pro-metastatic functions, as noted in other cancers [42, 
43]. But the latter does not exclude other possible roles 
played by ANGPTL3, such as in lipolysis. The decoupling 
between circulating ANGPTL3 and lipid levels in OCs 



Page 8 of 10Wong Chong et al. Lipids in Health and Disease           (2024) 23:59 

as well as the origin of ANGPTL3 increased secretion 
(tumoral vs hepatic) need to be further investigated.

Study limitations and strengths
The present work is a cross-sectional study and there-
fore precludes any causal association between higher 
ANGPTL3 levels and OC. Nonetheless, the analyses 
showed an increase of ANGPTL3 levels in women with 
HGSOC compared to women with BOL, a finding in line 
with previous data reported by Siamakpour-Reihani et al. 
Circulating atherogenic particles showed strong correla-
tive association with each other (Apo B, LDL, non-HDL), 
providing an internal validation for all steps conducted 
(from measurements of lipid-related blood parameters to 
statistical analyses). In that regard, correlations between 
ANGPTL3 and circulating lipids in the control group is 
a finding that will likely be observed in a larger cohort of 
women [44] (Fig. 2A).

Plasma samples came from non-fasting participants, 
which may elevate TG levels and introduce bias in LDL 
values calculated with the Friedewald equation. Despite 
the use of non-fasting patients’ samples, measured TG 
levels were < 5 mmol/L [45], which means that calculated 
LDL levels were not biased by participants’ fasting/non-
fasting status. The missing information included partici-
pants’ ethnicity, hormone-replacement therapy use [46] 
and  cholesterol-lowering drugs [47], factors that could 
have affected the lipid profile and lipid-related factors.

Controls corresponded to women presenting a non-
cancerous ovarian lesion. These lesions (fibromas and 
benign cysts) have not been associated with variations 
in lipid profile. Therefore, women diagnosed with BOL 
should not have lipid profiles different from lipid profiles 
of healthy women.

Women did not differ in age and had similar lipid pro-
files in the control vs. case groups (Table 1). Despite the 
absence of intergroup differences, age was considered as 
a potential biological confounder in analyses (see Table 1 
for paired comparison, Supplemental Fig. S2 for partial 
correlation analyses).

The limited number of individuals belonging to tumor 
stages I, II and IV (Table 1, n = 3, n = 3 and n = 4, respec-
tively) resulted in unequal group sizes and lack of statis-
tical power in group comparisons, which did not permit 
to study ANGPTL3 and other analytes changes through 
the different stages. The observed low number of sam-
ples belonging to women in stage I and II is in line with 
the fact that HGSOC is frequently diagnosed at an 
advanced disease stage, contributing to the high lethality 
of HGSOC. A small number of participants increases the 
risk of dismissing real differences due to lower statistical 
power. Nevertheless, analyses on small groups represent 
a cost-effective step for identifying parameters worth 

further investigation, such as ANGPTL3 in OCs. The fact 
that well-established associations are observed in this 
cohort of 71 women (ex; the strong correlation between 
atherogenic measures LDL, Apo B and Non-HDL) sug-
gests that the increase in ANGPTL3 in HGSOC is a real 
phenomenon which needs to be further investigated. 
Significant results with narrow confidence intervals gen-
erally have good predictive value for reproducibility in 
larger groups [48].

Conclusions
The main finding from this study was an elevation of 
plasma ANGPTL3 levels in women diagnosed with epi-
thelial high-grade serous ovarian carcinoma, along with 
a decoupling between ANGPTL3 levels and the lipid pro-
file in HGSOC. Given the availability of a monoclonal 
antibody against ANGPTL3 already used in patients with 
familial hypercholesterolemia, these results warrant fur-
ther investigation of whether ANGPTL3 inhibition has 
therapeutic potential in ovarian cancers. Confirmation of 
ANGPTL3 inhibition as a therapeutical target will permit 
rapid repositioning of Evinacumab in OC.
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