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Abstract 

Background and aim: Metabolic dysfunction-associated fatty liver disease (MAFLD) poses significant health and 
economic burdens on all nations. Thus, identifying patients at risk early and managing them appropriately is essential. 
This study’s goal was to develop a new predictive model for MAFLD. Additionally, to improve the new model’s clinical 
utility, researchers limited the variables to readily available simple clinical and laboratory measures.

Methods: Based on the National Health and Nutrition Examination Survey (NHANES) cycle 2017–2020.3, the study 
was a retrospective cross-sectional study involving 7300 participants. By least absolute shrinkage and selection opera-
tor (LASSO) regression, significant indicators independently associated with MAFLD were identified, and a predictive 
model called the MAFLD prediction nomogram (MPN) was developed. The study then compared the MPN with six 
existing predictive models for MAFLD. The model was evaluated by measuring the area under receiver operating char-
acteristic curve (AUC), net reclassification index (NRI), integrated discrimination improvement (IDI), calibration curve, 
and decision curve analysis (DCA) curve.

Results: In this study, researchers identified nine predictors from 33 variables, including age, race, arm circumference 
(AC), waist circumference (WC), body mass index (BMI), alanine aminotransferase (ALT)-to-aspartate aminotransferase 
(AST) ratio, triglyceride-glucose index (TyG), hypertension, and diabetes. The diagnostic accuracy of the MPN for 
MAFLD was significantly better than that of the other six existing models in both the training and validation cohorts 
(AUC 0.868, 95% confidence interval (CI) 0.858–0.877, and AUC 0.863, 95% CI 0.848–0.878, respectively). The MPN 
showed a higher net benefit than the other existing models.

Conclusions: This nonimaging-assisted nomogram based on demographics, laboratory factors, anthropometrics, 
and comorbidities better predicted MAFLD than the other six existing predictive models. Using this model, the gen-
eral population with MAFLD can be assessed rapidly.
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Introduction
The high degree of heterogeneity in the etiology of non-
alcoholic fatty liver disease (NAFLD) has made the cur-
rent diagnostic and classification criteria for NAFLD no 
longer effective in guiding the clinical management of 

the disease and in reducing the disease burden associ-
ated with it. In this context, NAFLD has been renamed 
metabolism-associated fatty liver disease (MAFLD) to 
play an active role in guiding the individualized and pre-
cise treatment of fatty liver disease [1–4]. Inactivity, low 
levels of physical activity, nutritional imbalances, and 
unhealthy eating habits contribute to the prevalence of 
the disease [5]. Furthermore, MAFLD is not only closely 
associated with chronic hepatitis, cirrhosis, and hepato-
cellular carcinoma but also contributes to the progres-
sion of cardiovascular disease, chronic kidney disease, 

†Haoxuan Zou and Fanrong Zhao contributed equally to this work.

*Correspondence:  xieyan@wchscu.cn

Department of Gastroenterology, West China Hospital, Sichuan University, No. 
37 Guoxue Alley, Chengdu, Sichuan 610041, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12944-022-01748-1&domain=pdf
http://orcid.org/0000-0002-6207-8888


Page 2 of 13Zou et al. Lipids in Health and Disease          (2022) 21:133 

and extrahepatic malignancies in conjunction with other 
metabolism-related diseases, such as diabetes, hyperlipi-
demia and hyperuricemia [1–4].

Detecting MAFLD as early as possible to identify those 
who may have silent progressive fatty liver disease is cru-
cial. Among the many diagnostic tools, the gold standard 
in diagnosing MAFLD is liver biopsy [6]. However, inva-
siveness is one of the drawbacks of liver biopsy. Ultra-
sonography (US), although inexpensive, depends on the 
experience of the operator and the sophistication of the 
technology. Other imaging tests, such as magnetic reso-
nance spectroscopy (MRS), computed tomography (CT), 
and vibration-controlled transient elastography (VCTE), 
are too expensive for mass screening to be effective. Thus, 
there is a need to construct a simple, noninvasive, and 
efficient clinical prediction model capable of accurately 
screening MAFLD. Meanwhile, the screening tool should 
be widely adapted for the early detection of MAFLD in 
primary, secondary, and tertiary medical centers.

Previous literature describes several models based on 
demographics, laboratory factors, anthropometrics, and 
comorbidities for diagnosing NAFLD [7–11]. Among 
these models, the fatty liver index (FLI) has demon-
strated sound diagnostic accuracy in the diagnosis of 
NAFLD in various populations [12, 13]. Other diagnostic 
models, such as the visceral adiposity index (VAI) [7], the 
hepatic steatosis index (HSI) [9], the ZJU index [11], and 
the Framingham steatosis index (FSI) [10], have also been 
used for NAFLD screening. Consistently, the triglyceride-
glucose index (TyG), an inexpensive and reliable index for 
assessing insulin resistance [14], is also used to diagnose 
NAFLD [15]. Nevertheless, its diagnostic efficacy varies 
significantly between studies [11, 16, 17]. Therefore, the 
present study will include TyG as a variable responding 
to insulin resistance in the new model development and 
compare the new model with the above model regarding 
MAFLD prediction efficacy. The nomogram, a visual rep-
resentation of a disease-specific prediction model based 
on various clinical variables, is helpful in detecting dis-
eases early and can be easily used at all levels of medical 
centers [18]. Consequently, nomograms can be used to 
help diagnose MAFLD early. Therefore, the researchers 
in the present study aimed to create a novel nomogram 
based on demographics, laboratory factors, anthropo-
metrics, and comorbidities to accurately detect MAFLD 
in the American population.

Data source
Data were included from the National Health and 
Nutrition Examination Survey (NHANES), which is 
a nationally cross-sectional and multistage study of 
the nonmilitary and noninstitutionalized population 
of the United States. Every two years, the NHANES 

data are released. Each participant in the survey signed 
an informed consent form, and ethics review board at 
the National Center for Health Statistics Research has 
approved the protocol for this survey. In addition, this 
study followed the same protocol as shown in Transpar-
ent Reporting of a Multivariable Predictive Model for 
Individual Prognosis or Diagnosis (TRIPOD) [19].

Participant selection
NHANES data (cycle 2017–2020.3) with valid vibration-
controlled transient elastography (VCTE) values were 
used for analyses. There were 8317 subjects with valid 
VCTE values and ages greater than or equal to 18 years in 
the 2017–2020.3 NHANES database. After excluding 431 
participants with no available important anthropomet-
ric data, 297 cases without key blood cell count data, 286 
cases without key biochemical values, and 3 participants 
with no smoking data, a total of 7300 individuals were 
finally enrolled. An overview of the enrollment process is 
shown in Fig. 1.

Demographics, Laboratory Factors, Anthropometrics, 
Lifestyles and Comorbidities
Data from NHANES included variables related to 
MAFLD from previous studies. These variables included 
demographics (age, sex, and race), anthropometrics 
(arm circumference, waist circumference, BMI, and 
hip circumference), lifestyles (smoking), comorbidi-
ties (hypertension and diabetes), and biomarkers such 
as white blood cell (WBC), hemoglobin (HB), platelets 
(PLT), lymphocytes (LYM), neutrophils (NEU), fast-
ing plasma glucose (FPG), total bilirubin (TBIL), aspar-
tate aminotransferase (AST), alanine aminotransferase 
(ALT), ALT to AST ratio, alkaline phosphatase (ALP), 
γ-glutamyl transpeptidase (GGT), triglyceride (TG), total 
cholesterol (TC), high-density lipoprotein cholesterol 
(HDL-C), total protein (TP), globulin (GLB), albumin 
(ALB), estimated glomerular filtration rate (eGFR), blood 
urea nitrogen (BUN), creatinine (CRE), and high-sensi-
tivity C-reactive protein (hsCRP).

This study categorized race into six categories (Non-
Hispanic White, Non-Hispanic Black, Other Hispanic, 
Mexican American, Non-Hispanic Asian, and Oth-
ers) and smoking into three groups (never, former, 
and current). The diagnostic criteria for diabetes were 
FPG ≥ 7.0  mmol/L or glycohemoglobin (HbA1c) > 6.5% 
or random plasma glucose ≥ 11.1  mmol/L or two-
hour oral glucose tolerance test (OGTT) plasma glu-
cose ≥ 11.1  mmol/L or under anti-diabetes treatment 
or self-reported diabetes [20]. A systolic blood pressure 
(SBP) of 140 mmHg or diastolic blood pressure (DBP) of 
90  mmHg or under antihypertension treatment or self-
reported hypertension was used as a diagnostic criterion 
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for hypertension [21]. The eGFR was calculated based on 
the chronic kidney disease epidemiology formula (CKD-
EPI) [22].

Definition of MALFD
Hepatic steatosis in this study was defined by the con-
trolled attenuation parameter (CAP), obtained via 
VCTE (FibroScan®), which is a validated tool for meas-
uring steatosis in participants with fatty liver [23]. 
CAP ≥ 268 dB/m was defined as significant hepatic stea-
tosis. This cutoff value provided an AUC of 0.865 (95% 
CI 0.850–0.880), a sensitivity (SEN) of 0.773 (95% CI 
0.690–0.838), and a specificity (SPE) of 0.812 (95% CI 
0.749–0.879) [24].

A diagnosis of MAFLD was made if hepatic steato-
sis was present along with any of the following: over-
weight or obesity, diabetes, and metabolic dysfunction. 
At least two conditions were required for metabolic 
dysfunction to exist: 1) WC ≥ 102  cm in males and 
WC ≥ 88  cm in females, 2) hypertension, 3) hyperlipi-
demia (TG ≥ 1.70 mmol/L or under lipid-lowering treat-
ment), 4) HDL-C < 1.0 mmol/L in men and < 1.3 mmol/L 
in women, 5) prediabetes, and 6) hsCRP > 2 mg/L [1].

Statistical analysis
R software was used for statistical analysis (version 4.1.2). 
For categorical data, counts and percentages were used, 
and for continuous data, the mean and standard devia-
tion (SD) were used.

For model development, in a 7:3 ratio, all 7300 partici-
pants were randomly divided into two groups for train-
ing and validation (5112 and 2188 subjects, respectively) 
using the “caret” package. The training dataset was used 
to develop the model, and internal validation was per-
formed using the validation dataset. In addition, the 
researchers in this study used the “glmnet” package to 
perform least absolute shrinkage and selection operator 
(LASSO) regression. This package runs a tenfold cross-
validation of the included variables before selecting the 
optimal lambda value. Researchers chose lambda.lse 
from the cross-validation results because it has the best 
performance but the least number of variables. Then, 
researchers used the “rms” package to run a logistic 
regression analysis. By including the variables screened in 
the LASSO regression, a multivariable logistic regression 
model was constructed. For each variable, an odds ratio 
(OR) and 95% confidence interval (CI) were assessed. The 
statistical significance levels were all two-sided. In the 

Fig. 1 Flow diagram of study design
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next step, using the “rms” package, this study developed 
the predictive nomogram using statistically significant 
variables.

For model evaluation, the receiver operating charac-
teristic curve (ROC) operation was performed using the 
“pROC” package and compared against existing mod-
els. Based on Delong’s method, P < 0.05 was considered 
statistically significant when comparing the area under 
the receiver operating characteristic curve (AUC) val-
ues. Using the AUC, the present study could distinguish 
true positives from false-positives based on the quality of 
the risk nomogram. Because the meaning of AUC incre-
ments is not intuitive, this study calculated the NRI and 
IDI based on the corresponding equations [25, 26].

Furthermore, researchers used the “terms” package to 
calculate the calibration curve and the Brier score, which 
was used to assess the calibration of the newly built nom-
ogram. The decision curve analysis (DCA) curve was 
conducted using the “price” package, which calculates the 
clinical practicability of the model based on numerous 
threshold probabilities.

To calculate the adequate sample size, there should 
be at least ten outcome events per variable (EPV) when 
performing prediction research. Researchers expected 
robust estimates as the study’s sample size and out-
come events were far greater than those of the EPV 
method [27].

Results
Participant characteristics
This study included 7300 subjects for analysis, and their 
mean age was 48.89 years. Of the 7300 participants, 3329 
(45.60%) were diagnosed with MAFLD according to the 
diagnostic criteria mentioned above. Among the 3329 
subjects with MAFLD, 1824 (54.79%) were men, and 
1505 (45.21%) were women. The two sets of subjects are 
described in Table  1 based on their basic characteris-
tics. At a ratio of 7:3, these participants were randomly 
divided into the training or validation cohort, resulting 
in 5112 and 2188 patients being included in each cohort. 
The training set participants averaged 48.81 years of age; 
49.69% were men, and 2324 (35.46%) had MAFLD. A 
mean age of 49.10  years was observed in the validation 
cohort, with 49.13% being men and 1005 (45.93%) having 
MAFLD. For baseline characteristics, there were no sig-
nificant differences between the two datasets (as shown 
in Table S1).

Selection of main predictors of MAFLD
Because LASSO regression cannot handle unordered 
multicategorical variables, this study split race and smok-
ing into several multiple dichotomous variables before 
performing LASSO regression. If LASSO regression 

screened out any of the split variables, the present study 
included the original unordered multicategorical vari-
ables for that variable in the multivariate logistic regres-
sion to construct the model.

Among the 33 demographics, laboratory factors, 
anthropometrics, lifestyles, and comorbidities, nine sig-
nificant predictors of MAFLD were selected in the train-
ing set (as shown in Fig.  2A, B). These predictors were 
age, race (Non-Hispanic Black and Mexican American), 
arm circumference, waist circumference, BMI, ALT/AST 
ratio, TyG, hypertension, and diabetes.

Construction of a new predictive model of MAFLD
After LASSO regression analysis, nine of the original 
33 variables were selected as optimal variables. Then, to 
create a new predictive model, this study used multivari-
ate logistic regression. Table S2 shows the results of the 
logistic regression analysis of these nine variables, and 
all nine predictors were statistically significant. This set 
of predictors, which were independent of each other, 
was combined to develop a nomogram that quantified 
MAFLD risk (as shown in Fig. 3). In addition, in order to 
make this nomogram more convenient to use, we have 
made it dynamic and searchable directly on the Internet 
(https:// thema fldpr edici tonmo del. shiny apps. io/ Dynam 
icMPN/) (as shown in Figure S1).

Performance of the MPN in AUC, reclassification, 
and calibration curve
Several different prediction models were compared based 
on calculating their specificity and sensitivity, including 
the MPN, FLI, HSI, VAI, FSI, ZJU, and TyG. Figure 4A, 
B shows the ROC curves of the MPN and the other six 
models in the training and validation cohorts. The per-
formance details are shown in Tables 2 and 3. Compared 
with FLI (0.849, 95% CI 0.838–0.859), HSI (0.825, 95% 
CI 0.814–0.836), VAI (0.732, 95% CI 0.718–0.746), FSI 
(0.848, 95% CI 0.838–0.859), ZJU (0. 833, 95% CI 0.822–
0.844), and TyG (0.743, 95% CI 0.729–0. 756), MPN had 
the highest AUC value for predicting MAFLD risk in 
the training dataset (0.868, 95% CI 0.858–0.877), and 
the MPN’s AUC values were significantly different from 
those of the six models described above (all P < 0.001). 
There was 86.3% sensitivity, 69.7% specificity, 70.4% PPV 
and 85.9% NPV of the MPN, while the cutoff value was 
0.360. In addition, in the validation dataset, compared 
with the FLI (0.847, 95% CI 0.832–0.863), HSI (0.818, 
95% CI 0.801–0.836), VAI (0.740, 95% CI 0.719–0.761), 
FSI (0.846, 95% CI 0.830–0.862), ZJU (0.829, 95% CI 
0.812–0.845), and TyG (0.744, 95% CI 0.723–0.764), the 
MPN also had the highest AUC value for predicting the 
risk of MAFLD (0.863, 95% CI 0.848–0.878). Similarly, in 
the validation set, statistically significant differences were 

https://themafldpredicitonmodel.shinyapps.io/DynamicMPN/
https://themafldpredicitonmodel.shinyapps.io/DynamicMPN/
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Table 1 Baseline characteristics of participants

Data are presented as means ± SD and absolute or relative percentages

Overall (n = 7300) Non-MAFLD (n = 3971) MAFLD (n = 3329) P value

Age (years) 48.89 ± 18.06 46.18 ± 18.87 52.13 ± 16.47  < 0.001

Sex, n (%)  < 0.001

Female 3685 (50.48) 2180 (54.90) 1505 (45.21)

Male 3615 (49.52) 1791 (45.10) 1824 (54.79)

Race, n (%)  < 0.001

Non-Hispanic Black 1817 (24.89) 1113 (28.03) 704 (21.15)

Non-Hispanic White 2563 (35.11) 1343 (33.82) 1220 (36.65)

Other Hispanic 763 (10.45) 405 (10.20) 358 (10.75)

Non-Hispanic Asian 884 (12.11) 544 (13.70) 340 (10.21)

Mexican American 918 (12.58) 367 (9.24) 551 (16.55)

Other 355 (4.86) 199 (5.01) 156 (4.69)

AC (cm) 33.54 ± 5.24 31.39 ± 4.47 36.11 ± 4.92  < 0.001

HC (cm) 106.86 ± 14.15 101.54 ± 11.50 113.22 ± 14.40  < 0.001

WC (cm) 100.07 ± 16.96 91.66 ± 13.79 110.09 ± 14.79  < 0.001

BMI (kg/m2) 29.63 ± 7.05 26.48 ± 5.52 33.40 ± 6.84  < 0.001

WBC (×  109/l) 7.21 ± 5.14 6.92 ± 6.67 7.55 ± 2.16  < 0.001

LYM (×  109/l) 2.25 ± 4.33 2.21 ± 5.81 2.31 ± 0.88 0.314

NEU (×  109/l) 4.15 ± 1.69 3.94 ± 1.69 4.39 ± 1.64  < 0.001

HB (g/l) 14.03 ± 1.54 13.86 ± 1.51 14.24 ± 1.55  < 0.001

PLT (×  109/l) 246.47 ± 64.89 243.89 ± 63.93 249.55 ± 65.89  < 0.001

FPG (mmol/l) 5.62 ± 1.95 5.22 ± 1.36 6.10 ± 2.39  < 0.001

TG (mmol/l) 1.54 ± 1.12 1.24 ± 0.79 1.91 ± 1.34  < 0.001

TyG 8.64 ± 0.65 8.40 ± 0.55 8.93 ± 0.65  < 0.001

ALT (u/l) 22.32 ± 18.99 18.97 ± 18.59 26.32 ± 18.69  < 0.001

AST (u/l) 21.89 ± 14.42 21.11 ± 15.15 22.82 ± 13.44  < 0.001

ALT/AST ratio 0.99 ± 0.36 0.88 ± 0.29 1.13 ± 0.38  < 0.001

TC (mmol/l) 4.79 ± 1.05 4.72 ± 1.03 4.87 ± 1.06  < 0.001

HDL-C (mmol/l) 1.38 ± 0.40 1.48 ± 0.41 1.25 ± 0.36  < 0.001

GGT (u/l) 31.60 ± 51.68 26.59 ± 54.93 37.59 ± 46.81  < 0.001

ALP (u/l) 77.71 ± 25.80 74.75 ± 25.81 81.23 ± 25.33  < 0.001

ALB (g/l) 40.79 ± 3.34 41.08 ± 3.37 40.44 ± 3.28  < 0.001

GLB (g/l) 30.88 ± 4.32 30.60 ± 4.35 31.21 ± 4.25  < 0.001

TP (g/l) 71.67 ± 4.42 71.68 ± 4.49 71.66 ± 4.34 0.796

TBIL (mg/dl) 7.85 ± 4.74 8.06 ± 5.04 7.60 ± 4.35  < 0.001

hsCRP (mg/l) 3.92 ± 8.30 3.03 ± 7.19 4.98 ± 9.34  < 0.001

CRE (mg/dl) 79.03 ± 39.21 78.34 ± 36.05 79.86 ± 42.67 0.100

BUN (mg/dl) 5.25 ± 2.02 5.12 ± 1.91 5.40 ± 2.13  < 0.001

eGFR (mg/min/1.73m2) 95.59 ± 23.59 97.60 ± 23.75 93.20 ± 23.18  < 0.001

Hypertension, n (%)  < 0.001

No 4662 (63.86) 2889 (72.75) 1773 (53.26)

Yes 2638 (36.14) 1082 (27.25) 1556 (46.74)

Diabetes, n (%)  < 0.001

No 5895 (80.75) 3574 (90.00) 2321 (69.72)

Yes 1405 (19.25) 397 (10.00) 1008 (30.28)

Smoking, n (%)  < 0.001

Never 4367 (59.82) 2469 (62.18) 1898 (57.01)

Former 1654 (22.66) 750 (18.89) 904 (27.16)

Current 1279 (17.52) 752 (18.94) 527 (15.83)

FLI 55.25 ± 32.65 37.28 ± 28.96 76.68 ± 22.19  < 0.001

HSI 38.97 ± 8.52 34.82 ± 6.60 43.92 ± 7.88  < 0.001

VAI 2.17 ± 2.26 1.58 ± 1.61 2.88 ± 2.67  < 0.001

FSI -0.89 ± 1.87 -1.88 ± 1.42 0.28 ± 1.66  < 0.001

ZJU 40.79 ± 8.34 36.68 ± 6.38 45.69 ± 7.73  < 0.001
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found between the MPN and the above models’ AUC 
values (all P < 0.001). There was 84.0% sensitivity, 72.5% 
specificity, 72.2% PPV and 84.2% NPV of the MPN, while 
the cutoff value was 0.397. Separate ROC curves and 
formulae for the above models can be found in Figures 
S1,2,3,4,5,6,7. In further subgroup analyses, the AUC of 
MPN remained higher in men and women, under and 
over 60 years of age, with and without hypertension, and 
with and without diabetes than in other existing models 
(shown in Tables S3,4,5,6,7,8,9,10, Figures S9,10,11,12).

Because the meaning of AUC increments is not intui-
tive, to further evaluate the recognition ability of the 
MPN, this study calculated the NRI and IDI and com-
pared them with other models. Compared with the 
FLI, HSI, VAI, FSI, ZJU, TyG, NRI and IDI values of 
the MPN were higher than those of the existing mod-
els in both the training and validation cohorts (as shown 
in Tables  2 and 3). These results demonstrate that the 
MPN has better discriminatory power and outperforms 
these commonly used predictive models.

Fig. 2 Variables selection using the LASSO regression. A Selection of the tuning parameter lambda in the LASSO model via tenfold cross-validation 
based on minimum criteria. Mean-squared error (MSE) from the LASSO regression cross-validation procedure was plotted as a function of log 
lambda. The y-axis indicates the MSE. The x-axis indicates the log lambda. Numbers along the upper x-axis represent the average number of 
predictors. Red dots indicate average MSE values for each model with a given lambda, and vertical bars through the red dots show the upper and 
lower values of the MSE. The vertical black lines define the optimal values of lambda, where the model provides its best fit to the data based on 1 
standard error criteria. The optimal lambda value of 0.014 with log lambda = -4.269 was selected. B The LASSO coefficient profiles of clinical features. 
The dotted vertical line was plotted at the value selected using tenfold cross-validation in A. The nine resulting variables with non-zero coefficients 
are indicated in the plot
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Consistently, the calibration curve of the MPN for 
screening MAFLD showed good consistency between 
both the training set (P = 0.671, Brier score = 0.148) 
and the validation set (P = 0.871, Brier score = 0.150) 
(as shown in Fig. 5A, B). A calibration curve that is as 
close to the diagonal line as possible (P > 0.05, Brier 
score < 0.25) indicates a more accurate prediction.

Clinical utility evaluation of the MPN
By quantifying the net benefit probabilities at the 0.0 to 
1.0 threshold, this study performed a DCA to assess the 
clinical usefulness of the MPN and compare it with other 
existing models. Simply put, there is a direct correlation 
between the decision curve and the net benefit of the 
model’s clinical decisions based on the distance from the 

Fig. 3 The nomogram (the MPN) represents the predicted probability of MAFLD on a scale of 0 to 260. For each predictor, draw a vertical line 
straight up to the point axis and note the corresponding points. Sum the points from each predictor, and the total score corresponding to a 
predicted probability of major postoperative complications can be found at the bottom of the nomogram. Hypertension: 0 means no hypertension, 
1 means hypertension; Diabetes: 0 means no diabetes, 1 means diabetes; Race: White means Non-Hispanic White, Black means Non-Hispanic Black, 
Asian means Non-Hispanic Asian, Mexican means Mexican American, and others mean other race (including multi-racial)

Fig. 4 ROC curves for predicting MAFLD in the training dataset (A) and the validation dataset (B). The x-axis is the specificity; the y-axis is the 
sensitivity
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two extreme curves: clinical decisions made by the model 
are more beneficial when they are farther from the two 
extreme curves. As shown in Fig. 6A, B, the MPN showed 
a higher net benefit than the other six models (the FLI, 
the HSI, the AVI, the FSI, the ZJU, and the TyG) in both 
the training and validation sets. Based on these results, 
MPN is comparable to VCTE in diagnosing MAFLD. 
This newly built nomogram does not require imaging 
or liver biopsy to identify hepatic steatohepatitis. This 
screening tool can be used to determine if an individual 
needs further, more accurate testing to confirm MAFLD 
diagnosis.

Discussion
Hepatic steatosis is the basis of diagnosing MAFLD 
[1]. However, tests such as US, VCTE, CT, MRS, and 
biopsy that can respond to hepatic steatosis are not 
suitable for mass screening. Because MAFLD lacks spe-
cific clinical symptoms, clinicians often find MAFLD 
accidentally while performing tests for other diseases 
or during annual physical examinations. Unlike imag-
ing or liver biopsy tests, demographics (age, race, etc.), 
laboratory factors (ALT, AST, TG, FPG, etc.), anthropo-
metrics (AC, WC, BMI, etc.), and comorbidities (diabe-
tes, hypertension, etc.) are routinely monitored during 
annual physical examinations and are easily available at 
primary, secondary, and tertiary medical centers. There-
fore, developing a simple and practical diagnostic tool 
based on these easily accessible indicators appears sig-
nificantly essential in resolving this problem.

In the present study, researchers used a large sample in 
the Americas with standardized demographic, anthro-
pometric, laboratory, and comorbidity measures. Addi-
tionally, when constructing the model for predicting 
MAFLD, to enhance the clinical usefulness of the newly 
built nomogram, the candidate variables were limited to 
simple clinical and laboratory measures that are read-
ily available. Therefore, based on data for 7300 partici-
pants from the NHANES database, this study developed 
a new clinical prediction model for the early screening 
of MAFLD, which includes nine indicators, such as age, 
race, arm circumference, waist circumference, BMI, 
ALT/AST ratio, TyG, hypertension, and diabetes. Fur-
ther examinations, such as imaging tests or liver biopsy, 
were recommended for eligible subjects with a high 
probability of MAFLD. Using this novel approach, clini-
cal workers can quickly and accurately identify subjects 
potentially at risk for MAFLD.

The present study innovatively included TyG as an 
index of response to insulin resistance in the variable 
screening. Due to its strong correlation with MALFD in 
this research, TyG was included in the final model con-
struction. Insulin resistance is an integral and central part 
of the development of MAFLD [28]. At the beginning, 
the TyG was invented as a reliable alternative indicator of 
the response to insulin resistance [14, 29, 30]. This index 
is new and reliable for assessing insulin resistance involv-
ing fasting glucose and triglycerides, with the advantages 
of being inexpensive and easy to use [31, 32]. A close 
association between the TyG and patients with NAFLD 

Fig. 5 The performance of the new nomogram was assessed by calibration curves in the training dataset (A) and the validation dataset (B). The 
x-axis is the nomogram predicted probability of MAFLD; the y-axis is actual probability
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has been confirmed [15, 17, 33]. Some studies have also 
used the TyG as a diagnostic model for NAFLD, and its 
diagnostic efficacy varies widely among articles [11, 15–
17]. However, the results of most articles showed that the 
predictive value of the TyG for NAFLD was not satisfac-
tory. The diagnostic value of the TyG index for the risk of 
MAFLD in this study was also lower than that of models 
such as the FLI, the HSI, the FSI, and the ZJU. Moreover, 
the MPN showed better predictive efficacy than the TyG 
alone in both the training and validation datasets, imply-
ing that TyG needs to be combined with other predictors 
to diagnose MAFLD more accurately.

Although there are many predictive models for the 
diagnosis of NAFLD in previous studies, these mod-
els are based on logistic regression for variable screen-
ing and model construction, and they suffer from a 
small sample size, lack of complete model evaluation 
methods, lack of internal or external validation, and 
lack of comparison with existing models. In addition, 
although patients diagnosed with MALFD and NAFLD 
mostly overlapped, the populations of MAFLD and 
NAFLD were not exactly the same. A recent retrospec-
tive study using NHANES data showed that MAFLD 
criteria incorporated a significant proportion of patients 
not identified by NALFD criteria and that the MAFLD 
patient cohort had more comorbidities and a worse 
prognosis than patients with NAFLD only [34]. There-
fore, there is a need to construct an early diagnosis 
model for MALFD to facilitate early intervention in this 

population. In contrast to previous studies, this study 
randomly divided the study population into training 
and validation cohorts, with the training set used for 
model development and the validation set used for inter-
nal validation of the model. LASSO regression analysis 
was used to screen indicators, and multivariate logistic 
regression analysis was also performed to structure the 
MPN. Additionally, the newly built model was shown 
as a nomogram (normal and dynamic nomograms), 
which can be easily used on a web page or electroni-
cally on a computer or printed out directly for clinical 
use in paper form. Regarding model evaluation, AUC, 
NRI, IDI, calibration curve, and DCA curve were sys-
tematically evaluated to verify the accuracy and stabil-
ity of this study’s model. In addition, the new model was 
compared with the FLI [8], HSI [9], VAI [7], ZJU [11], 
FSI [10], and TyG [15] regarding the AUC, NRI, IDI, 
and DCA curves. Even in further subgroup analyses, 
the AUC of MPN remained superior to other models (as 
shown in Tables S3,4,5,6,7,8,9,10 Figures S8,9,10,11,12), 
however, the optimal cutoff values were not the same 
for each subgroup, so the predicted and observed risk of 
MAFLD may be slightly different, depending on patient 
characteristics (men versus women, under 60  years of 
age versus over 60  years of age, non-hypertension ver-
sus hypertension, non-diabetes versus diabetes). In 
summary, the newly built model outperforms the other 
six existing models in all aspects, indicating that its 

Fig. 6 The clinical utility of the nomogram was evaluated by decision curves in the training dataset (A) and the validation dataset (B). The x-axis 
measures the threshold probability. The y-axis represents net benefits, calculated by subtracting the relative harms (false positives) from the benefits 
(true positives)
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predictive efficacy is greater than the others overall (as 
shown in Figs. 4, 6 and Table 2).

Strength and limitations
Several advantages of this study are worth mention-
ing. First, in this study, hepatic steatosis was measured 
by VCTE, which is more sensitive and accurate than US 
[35]. Second, this study used a large sample of 7730 par-
ticipants from the NHANES database to make the results 
reliable. Third, in developing the model for predicting 
MALFD, researchers restricted the variables to simple 
and available measures to improve the clinical utility of 
this study’s nomogram. However, researchers acknowl-
edge that there are several limitations. First, in NHANES, 
participants representing the noninstitutionalized civil-
ian population in the Americas were selected through 
a multistage, probability sampling design and were not 
chosen through random sampling. Therefore, when 
analyzing NHANES data, sample weights that allow the 
findings to reflect the American population-wide char-
acteristics should be considered. This study did not per-
form a weighted analysis, and samples with missing data 
were directly excluded, so the baseline characteristics 
of the population in this study are not representative of 
the actual situation in the Americas. However, the pre-
diction model only needs to predict the sampled partici-
pants, and the unweighting does not affect the accuracy 
of the prediction model constructed in this study. Sec-
ond, although VCTE is more accurate than ultrasound 
for diagnosing hepatic steatosis, it is still inferior to liver 
biopsy. Thus, this nomogram may potentially under-
detect or underdiagnose MAFLD. Third, although this 
study divided whole sets into the training and validation 
sets at the beginning and used the validation set for inter-
nal validation, this study still lacks external validation to 
further evaluate the model efficacy. To verify the findings 
externally, multicenter studies that include participants 
from different regions are needed.

Conclusion
Compared with other existing models, this study devel-
oped an effective clinical nomogram, called the MPN, for 
screening MAFLD in a large US population. Depending 
on the assessment of risk, clinicians can develop indi-
vidualized treatment plans for subjects. For individuals 
at high risk of MAFLD, additional diagnostic tests should 
be ordered, which will allow early lifestyle or medi-
cal intervention and prevent further progression of the 
disease. Thus, the prediction model constructed in this 
study for MAFLD has significant clinical value. However, 
the MPN still needs external validation in other cohorts 
to prove its generalizability.
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